Câu hỏi:
12/07/2024 264Cho hai hàm số và . Xét các mệnh đề sau:
Đồ thị của hai hàm số f (x) và g (x) luôn cắt nhau tại một điểm.
Hàm số f(x)+g(x) đồng biến khi a > 1, nghịch biến khi 0<a<1
Đồ thị hàm số f (x) nhận trục Oy làm tiệm cận.
Chỉ có đồ thị hàm số f (x) có tiệm cận.
Hỏi có tất cả bao nhiêu mệnh đề đúng?
A. 1
B. 2
C. 3
D. 4
Trả lời:
Chọn a = 2 chẳng hạn, khi đó f (x) và g (x) cùng đồng biến.
Mà hai hàm cùng đồng biến thì không kết luận được số nghiệm của phương trình f(x)=g(x) vì nó có thể vô nghiệm, hoặc có một nghiệm, hoặc có hai nghiệm. Do đó 1 sai.
Tổng của hai hàm đồng biến là hàm đồng biến, tổng của hai hàm nghịch biến là hàm nghịch biến. Do đó 2 đúng.
Dựa vào lí thuyết, đồ thị hàm số nhận trục Oy làm tiệm cận đứng. Do đó 3 đúng.
Đồ thị hàm số nhận trục Ox làm tiệm cận ngang. Do đó 4 sai.
Vậy có các mệnh đề 2 và 3 đúng.
Đáp án cần chọn là: B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Cho hai hàm số với lần lượt có đồ thị là như hình bên. Mệnh đề nào đúng?
Câu 6:
Đối xứng qua trục hoành của đồ thị hàm số là đồ thị nào trong các đồ thị có phương trình sau đây?
Câu 7:
Cho hàm số . Xét các khẳng định sau:
Khẳng định 1:
Khẳng định 2:
Khẳng định 3:
Khẳng định 4:
Trong các khẳng định trên, có bao nhiêu khẳng định đúng?
Câu 9:
Tập xác định của hàm số là một khoảng có độ dài , với m và n là các số nguyên dương và nguyên tố cùng nhau. Khi đó m – n bằng:
Câu 14:
Cho và các hàm . Trong các khẳng định sau, có bao nhiêu khẳng định đúng?
1)
2)
3)
4)