Câu hỏi:
14/07/2024 257Biết có hai số u và v thỏa mãn u – v = 10 và u.v = 11. Tính |u+ v| ?
A. 11
B. 12
C. 10
D. 13
Trả lời:

Đáp án B
Ta có: u.v =11 nên u.(-v) = -11 (1)
Từ u – v = 10 nên u + (- v) = 10 (2)
Khi đó; u và (-v) là nghiệm phương trình:
x2-10x-11=0 (*)
Do a - b + c = 1 -(-10 ) + (-11) = 0 nên phương trình (*) có 2 nghiệm là:
x1 = -1 và x2 = 11
* Trường hợp 1: Nếu u = -1 và –v = 11
=> v = -11 nên u + v = -12
* Trường hợp 2: nếu u = 11 và –v = -1 thì v = 1
Suy ra: u + v = 12
Trong cả 2 trường hợp ta có: |u + v| = 12
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Không giải phương trình, tính tổng hai nghiệm (nếu có) của phương trình x2 - 6x + 7 = 0
Câu 2:
Biết có hai số u và v thỏa mãn điều kiện: u + v = 12 và u.v = 27. Biết u < v. Tính u2.v?
Câu 3:
Chọn phát biểu đúng: Phương trình ax2 + bx + c (a khác 0) có a - b + c = 0 . Khi đó:
Câu 4:
Cho phương trình x2 - 4x + (2m - 2) = 0.Tìm m để phương trình trên có 2 nghiệm dương phân biệt ?
Câu 5:
Cho phương trình x2 - 4x + m + 1= 0 . Tìm m để phương trình trên có nghiệm và x1. x2 = 4. Tìm m ?
Câu 6:
Gọi x1; x2 là nghiệm của phương trình x2 - 5x + 2 = 0. Không giải phương trình, tính giá trị của biểu thức A = x12 + x22
Câu 7:
Chọn phát biểu đúng. Phương trình ax2 + bx + c (a≠0) có hai nghiệm x1; x2. Khi đó:
Câu 8:
Cho hai số có tổng là S và tích là P với S2≥ 4P. Khi đó hai số đó là hai nghiệm của phương trình nào dưới đây:
Câu 9:
Cho phương trình x2 - (m + 1)x + m = 0. Có bao nhiêu giá trị nguyên của m để phương trình đã cho có 2 nghiệm âm?