Giải SGK Toán 11 CD Bài tập cuối chương 8
Giải SGK Toán 11 CD Bài tập cuối chương 8
-
127 lượt thi
-
15 câu hỏi
-
0 phút
Danh sách câu hỏi
Câu 1:
15/07/2024Cho hình lập phương MNPQ.M’N’P’Q’ có cạnh bằng a.
a) Góc giữa hai đường thẳng MN và M’P’ bằng:
A. 30°;
B. 45°;
C. 60°;
D. 90°.
a) Đáp án đúng là: B
Vì MNPQ.M’N’P’Q’ là hình lập phương nên MM’ // PP’ và MM’ = PP’.
Suy ra M’P’PM là hình bình hành. Do đó MP // M’P’.
Suy ra góc giữa hai đường thẳng MN và M’P’ bằng góc giữa hai đường thẳng MN và MP và bằng
Vì MNPQ là hình vuông nên đường chéo MP là đường phân giác của góc NMQ, do đó
Vậy góc giữa hai đường thẳng MN và M’P’ bằng 45°.
Câu 3:
19/07/2024c) Số đo của góc nhị diện [N, MM’, P] bằng:
A. 30°;
B. 45°;
C. 60°;
D. 90°.
c) Đáp án đúng là: B
Do M’M ⊥ (MNPQ) và MN ⊂ (MNPQ), MP ⊂ (MNPQ).
Suy ra M’M ⊥ MN và M’M ⊥ MP.
Mà MN ∩ MP = M ∈ M’M.
Do đó là góc phẳng nhị diện của góc nhị diện [N, MM’, P].
Theo câu a ta có
Vậy số đo của góc nhị diện [N, MM’, P] bằng 45°.
Câu 4:
20/07/2024d) Khoảng cách từ điểm M đến mặt phẳng (NQQ’N’) bằng:
A. a;
B.
C.
D.
d) Đáp án đúng là: B
Gọi O là giao điểm của MP và NQ.
Vì MNPQ là hình vuông nên MO ⊥ NQ.
Do MNPQ.M’N’P’Q’ là hình lập phương nên N’N ⊥ (MNPQ).
Mà MO ⊂ (MNPQ) nên N’N ⊥ MO.
Ta có: MO ⊥ NQ, MO ⊥ N’N và NQ ∩ N’N = N trong (NQQ’N’).
Suy ra MO ⊥ (NQQ’N’).
Khi đó, d(M, (NQQ’N’)) = MO.
Vì MNPQ là hình vuông và O = MP ∩ NQ nên O là trung điểm của MP.
Do đó
Vậy khoảng cách từ điểm M đến mặt phẳng (NQQ’N’) bằng
Câu 5:
20/07/2024Cho hình hộp chữ nhật MNPQ.M’N’P’Q’ có MN = 2a, MQ = 3a, MM’ = 4a. Khoảng cách giữa hai đường thẳng NP và M’N’ bằng:
A. 2a;
B. 3a;
C. 4a;
D. 5a.
Đáp án đúng là: C
Vì MNPQ.M’N’P’Q’ là hình hộp chữ nhật nên ta có:
⦁ NN’ ⊥ (MNPQ) mà NP ⊂ (MNPQ) nên NN’ ⊥ NP;
⦁ NN’ ⊥ (M’N’P’Q’) mà M’N’ ⊂ (MNPQ) nên NN’ ⊥ M’N’.
Từ các kết quả trên ta có đoạn thẳng NN’ là đoạn vuông góc chung của hai đường thẳng NP và M’N’.
Suy ra d(NP, M’N’) = NN’.
Do MNPQ.M’N’P’Q’ là hình hộp chữ nhật nên NN’ = MM’ = 4a.
Vậy khoảng cách giữa hai đường thẳng NP và M’N’ bằng 4a.
Câu 6:
13/07/2024Cho khối lăng trụ có diện tích đáy bằng a2 và chiều cao bằng 3a. Thể tích của khối lăng trụ đó bằng:
A. a3;
B. 3a3;
C.
D. 9a3.
Câu 7:
14/07/2024Cho khối chóp có diện tích đáy là a2 và chiều cao là 3a. Thể tích của khối chóp bằng:
A. a3;
B. 3a3;
C.
D. 9a3.
Đáp án đúng là: A
Thể tích của khối chóp được tính theo công thức: trong đó S là diện tích đáy, h là chiều cao của khối chóp.
Vậy thể tích của khối chóp có S = a2 và h = 3a là:
Câu 9:
20/07/2024Cho hình lăng trụ tam giác đều ABC.A’B’C’ có tất cả các cạnh bằng a. Gọi M là trung điểm của AB (Hình 100).
a) Tính góc giữa hai đường thẳng AB và B’C’.
Vì ABC.A’B’C’ là hình lăng trụ tam giác đều có tất cả các cạnh bằng a nên ta có:
⦁ Các mặt bên A’C’CA, B’C’CB, A’B’BA đều là hình vuông cạnh a.
⦁ Hai mặt đáy ABC và A’B’C’ là hai tam giác đều cạnh a và hai mặt phẳng chứa hai mặt đáy song song với nhau.
⦁ Các cạnh bên AA’, BB’, CC’ đều vuông góc với mặt phẳng đáy (ABC) và (A’B’C’).
a) Do B’C’CB là hình vuông nên BC // B’C’.
Suy ra góc giữa hai đường thẳng AB và B’C’ bằng góc giữa hai đường thẳng AB và BC và bằng
Mặt khác ABC là tam giác đều nên
Vậy góc giữa hai đường thẳng AB và B’C’ bằng 60°.
Câu 10:
19/07/2024b) Tính góc giữa đường thẳng A’B và mặt phẳng (ABC).
b) Vì AA’ ⊥ (ABC) nên AB là hình chiếu của A’B trên (ABC).
Suy ra góc giữa đường thẳng A’B và mặt phẳng (ABC) bằng
Do A’B’BA là hình vuông nên đường chéo BA’ là phân giác của góc ABB’ nên
Vậy góc giữa đường thẳng A’B và mặt phẳng (ABC) bằng 45°.
Câu 11:
14/07/2024c) Tính số đo của góc nhị diện [B, CC’, M].
c) Do CC’ ⊥ (ABC) và BC, CM đều nằm trên (ABC).
Suy ra CC’ ⊥ BC, CC’ ⊥ CM.
Mà BC ∩ CM = C ∈ CC’.
Do đó là góc phẳng nhị diện của góc nhị diện [B, CC’, M].
Xét tam giác ABC đều có: CM là đường trung tuyến (do M là trung điểm của BC) nên đồng thời là đường phân giác của
Suy ra
Vậy số đo của góc nhị diện [B, CC, M] bằng 30°.
Câu 12:
22/07/2024d) Chứng minh rằng CC’ // (ABB’A’). Tính khoảng cách giữa đường thẳng CC’ và mặt phẳng (ABB’A’).
d) Do B’C’CB là hình vuông nên CC’ // BB’.
Mà BB’ ⊂ (ABB’A’) nên CC’ // (ABB’A’).
Khi đó d(CC’, (ABB’A’)) = d(C, (ABB’A’)).
Do AA’ ⊥ (ABC) và CM ⊂ (ABC) nên AA’ ⊥ CM.
Vì tam giác ABC đều có CM là đường trung tuyến nên đồng thời là đường cao của tam giác hay CM ⊥ AB.
Ta có: CM ⊥ AA’, CM ⊥ AB và AA’ ∩ AB = A trong (ABB’A’).
Suy ra CM ⊥ (ABB’A’).
Khi đó d(C, (ABB’A’)) = CM.
Do M là trung điểm của AB nên
Áp dụng định lí Pythagore vào tam giác CBM vuông tại M (do CM ⊥ AB) có:
BC2 = BM2 + CM2
Suy ra
Do đó
Vậy khoảng cách giữa đường thẳng CC’ và mặt phẳng (ABB’A’) bằng
Câu 13:
18/07/2024e) Chứng minh rằng CM ⊥ (ABB’A’). Tính khoảng cách giữa hai đường thẳng CC’ và A’M.
e) Theo câu d ta có CM ⊥ (ABB’A’).
Mà A’M ⊂ (ABB’A’) nên CM ⊥ A’M.
Do CC’ ⊥ (ABC) và CM ⊂ (ABC) nên CC’ ⊥ CM.
Ta thấy: CM ⊥ A’M, CM ⊥ CC’.
Suy ra đoạn thẳng CM là đoạn vuông góc chung của hai đường thẳng CC’ và A’M.
Khi đó
Vậy khoảng cách giữa hai đường thẳng CC’ và A’M bằng
Câu 14:
18/07/2024g) Tính thể tích của khối lăng trụ tam giác đều ABC.A’B’C’ và thể tích khối chóp A’.MBC.
g) ⦁ Diện tích tam giác ABC đều cạnh a có đường cao là:
Thể tích của khối lăng trụ tam giác đều ABC.A’B’C’ có chiều cao AA’ = a và diện tích đáy là:
⦁ Vì A là hình chiếu của A’ trên (ABC) và (MBC) ≡ (ABC).
Suy ra A cũng là hình chiếu của A’ trên (MBC).
Nên ta có đoạn thẳng AA’ cũng là chiều cao của khối chóp A’.MBC.
Diện tích tam giác MBC vuông tại M là:
Thể tích của khối chóp tam giác A’.MBC có chiều cao AA’ = a và diện tích đáy là:
Câu 15:
23/07/2024Đền Kukulcan (Hình 101) là một kim tự tháp Trung Mỹ nằm ở khu di tích Chichen Itza, Mexico, được người Maya xây vào khoảng từ thế kỉ IX đến thế kỉ XII. Phần thân của đền, không bao gồm ngôi đền nằm phía trên, có dạng một khối chóp cụt tứ giác đều (không tính cầu thang và coi các mặt bên là phẳng) với độ dài đáy dưới là 55,3 m, chiều cao là 24 m, góc giữa cạnh bên và mặt phẳng đáy là khoảng 47°.
(Nguồn: https://vi.wikipedia.org)
Tính thể tích phần thân của ngôi đền có dạng khối chóp cụt tứ giác đều đó theo đơn vị mét khối (làm tròn kết quả đến hàng phần trăm).
Mô tả phần thân của đền Kukulcan trong bài toán bằng khối chóp cụt tứ giác đều ABCD.A’B’C’D’, với O và O’ lần lượt là tâm của hai đáy ABCD và A’B’C’D’.
Như vậy ta có:
⦁ ABCD là hình vuông cạnh 55,3 có diện tích SABCD = 55,32 = 3 058,09 (m2);
⦁ A’B’C’D’ là hình vuông;
⦁ Các cạnh bên A’A, B’B, C’C, D’D tạo với mặt đáy bằng 47°;
⦁ OO’ vuông góc với (ABCD) và (A’B’C’D’) và OO’ = 24 (m).
Do ABCD là hình vuông nên do đó tam giác ABC vuông tại B.
Áp dụng định lí Pythagore vào tam giác ABC vuông tại B có:
AC2 = AB2 + BC2 = 55,32 + 55,32 = 2 . 55,32.
Suy ra (m).
Do đó (m) (do O là tâm hình vuông ABCD).
Dễ thấy: (ABCD) ∩ (A’C’CA) = AC;
(A’B’C’D’) ∩ (A’C’CA) = A’C’.
Mà (ABCD) // (A’B’C’D’).
Suy ra AC // A’C’ hay A’C’CA là hình thang.
Xét hình thang A’C’CA, kẻ C’H ⊥ AC (H ∈ AC).
Vì OO’ ⊥ (ABCD) và AC ⊂ (ABCD) nên OO’ ⊥ AC.
Do đó C’H // OO’ (cùng vuông góc với AC).
Mà O’C’ // OH (do A’C’ // AC)
Suy ra O’C’HO là hình bình hành.
Do đó: C’H = OO’ = 24 (m) và OH = O’C’.
Vì OO’ ⊥ (ABCD) và OO’ // C’H nên C’H ⊥ (ABCD).
Suy ra CH là hình chiếu của CC’ trên (ABCD).
Khi đó, góc giữa cạnh bên CC’ và mặt phẳng đáy bằng
Xét tam giác C’HC vuông tại H (do C’H ⊥ AC) có
Suy ra
Suy ra O’C’ = OH = OC – HC ≈ 39,1 – 22,38 = 16,72.
Ta có A’C’ = 2O’C ≈ 2.16,72 = 33,44 (do O’ là tâm hình vuông A’B’C’D’).
Vì A’B’C’D’ là hình vuông nên và A’B’ = B’C’.
Suy ra tam giác A’B’C’ vuông cân tại B’.
Áp dụng định lí Pythagore trong tam giác A’B’C’ vuông cân tại B’ có:
A’B’2 + B’C’2 = A’C’2 hay 2A’B’2 = A’C’2
Suy ra
Diện tích hình vuông A’B’C’D’ cạnh 23,65 là: S A’B’C’D’ ≈ 23,652 = 559,3225 (m2).
Như vậy, thể tích khối chóp cụt tứ giác đều ABCD.A’B’C’D’ với chiều cao OO’ = 24 và diện tích hai đáy SABCD = 3 058,09; SA’B’C’D’ = 559,3225 là
Vậy thể tích phần thân ngôi đền đã cho gần bằng 39 402,06 m3.