Trang chủ Lớp 11 Toán Giải SGK Toán 11 CD Bài 6. Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối

Giải SGK Toán 11 CD Bài 6. Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối

Giải SGK Toán 11 CD Bài 6. Hình lăng trụ đứng. Hình chóp đều. Thể tích của một số hình khối

  • 25 lượt thi

  • 22 câu hỏi

  • 0 phút

Danh sách câu hỏi

Câu 1:

Ở lớp 7, ta đã làm quen với hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác, tức là những hình lăng trụ đứng có đáy là tam giác hoặc tứ giác.

Hình lăng trụ đứng với đáy là đa giác, đặc biệt là đa giác đều, có tính chất gì (Hình 97)?

Ở lớp 7, ta đã làm quen với hình lăng trụ đứng tam giác và hình lăng trụ đứng tứ giác, tức là những hình lăng trụ đứng có đáy là tam giác hoặc tứ giác. (ảnh 1)
Xem đáp án

Quan sát Hình 79 ta thấy hình lăng trụ đứng với đáy là đa giác đều có tính chất sau:

Hai đáy là hai đa giác đều bằng nhau, các cạnh đáy bằng nhau.

Cạnh bên bằng nhau và cùng vuông góc với mặt đáy.

Các mặt bên là các hình chữ nhật, mặt phẳng chứa mặt bên vuông góc với mặt phẳng đáy.


Câu 2:

Cho hình lăng trụ tam giác có các mặt bên là hình chữ nhật ở Hình 80a, 80b. Hãy cho biết mỗi cạnh bên của hình lăng trụ đó có vuông góc với các mặt đáy hay không.

Cho hình lăng trụ tam giác có các mặt bên là hình chữ nhật ở Hình 80a, 80b. Hãy cho biết mỗi cạnh bên của hình (ảnh 1)
Xem đáp án

Do: A’B’BA là hình chữ nhật nên AA’ AB và AA’ // BB’;

       A’C’CA là hình chữ nhật nên AA’ AC và AA’ // CC’.

Ta có: AA’ AB, AA’ AC và AB ∩ AC = A trong (ABC).

Suy ra AA’ (ABC).

Hơn nữa: AA’ // BB’ và AA’ // CC’.

Suy ra BB’ (ABC) và CC’ (ABC).

Chứng minh tương tự ta được: AA’ (A’B’C’), BB’ (A’B’C’) và CC’ (A’B’C’).

Vậy mỗi cạnh bên của lăng trụ đó đều vuông góc với các mặt đáy.


Câu 6:

Cho hình chóp tam giác đều S.ABC. Chứng minh rằng các cạnh bên tạo với mặt phẳng chứa đáy các góc bằng nhau.

Xem đáp án
Cho hình chóp tam giác đều S.ABC. Chứng minh rằng các cạnh bên tạo với mặt phẳng chứa đáy các góc bằng nhau. (ảnh 1)

Do S.ABC là hình chóp tam giác đều nên SA = SB = SC (các cạnh bên bằng nhau).

Gọi O là chân đường cao của hình chóp tam giác đều S.ABC.

Do SO (ABC) nên SO OA, SO OB, SO OC.

Xét ∆SAO và ∆SBO có:

SOA^=SOB^=90°;

SO là cạnh chung;

SA = SB (chứng minh trên)

Do đó ∆SAO = ∆SBO (cạnh huyền – cạnh góc vuông)

Suy ra SAO^=SCO^ (hai góc tương ứng)

Chứng minh tương tự, ta cũng có∆SAO = ∆SCO nên SAO^=SCO^. 

Từ đó ta có: SAO^=SBO^=SCO^.

Vậy các cạnh bên tạo với mặt phẳng chứa đáy các góc bằng nhau.


Câu 8:

Cho hình chóp đều S.ABC. Gọi A’, B’, C’ lần lượt là trung điểm của các đoạn thẳng SA, SB, SC. Chứng minh rằng phần hình chóp đã cho giới hạn bởi hai mặt phẳng (ABC) và (A’B’C’) là hình chóp cụt đều.

Xem đáp án
Cho hình chóp đều S.ABC. Gọi A’, B’, C’ lần lượt là trung điểm của các đoạn thẳng SA, SB, SC. Chứng minh rằng phần hình (ảnh 1)

Xét ∆SAB có: A’, B’ lần lượt là trung điểm của SA, SB nên A’B’ là đường trung bình của ∆SAB. Do đó A’B’ // AB.

Mà AB (ABC).

Suy ra A’B’ // (ABC).

Chứng minh tương tự, ta cũng có B’C’ // (ABC).

Ta có: A’B’ // (ABC), B’C’ // (ABC) và A’B’ ∩ B’C’ = B’ trong (A’B’C’).

Suy ra (A’B’C’) // (ABC).

Mà S.ABC là hình chóp đều.

Vậy phần hình chóp đã cho giới hạn bởi hai mặt phẳng (ABC) và (A’B’C’) là hình chóp cụt đều.


Câu 9:

Hãy nêu lại công thức tính thể tích của khối lăng trụ đứng tam giác, khối lăng trụ đứng tứ giác.

Xem đáp án

Lời giải

Thể tích của khối lăng trụ đứng tam giác, tứ giác đều được tính bằng công thức:

V = S.h.

 Trong đó S là diện tích đáy và h là chiều cao khối lăng trụ đứng tam giác.

Hãy nêu lại công thức tính thể tích của khối lăng trụ đứng tam giác, khối lăng trụ đứng tứ giác. (ảnh 1)

Câu 10:

Tính thể tích của khối lăng trụ ABC.A’B’C’ biết tất cả các cạnh bằng a và hình chiếu của A’ trên mặt phẳng (ABC) là trung điểm của AB.

Xem đáp án
Tính thể tích của khối lăng trụ ABC.A’B’C’ biết tất cả các cạnh bằng a và hình chiếu của A’ trên mặt phẳng (ABC) là trung điểm của AB. (ảnh 1)

Gọi H là trung điểm của AB nên AH=AB2=a2.

Vì hình chiếu của A’ trên mặt phẳng (ABC) là trung điểm của AB nên A’H (ABC).

Ta có: A’H (ABC) và AB (ABC) nên A’H AB.

Áp dụng định lí Pythagore vào tam giác A’AH vuông tại H (do A’H AB) có:

A’A2 = A’H2 + AH2

Do đó A'H=A'A2AH2=a2a22=a2a24=3a24=a32.

Xét ∆ABC đều có: CH là đường trung tuyến (do H là trung điểm của AB) nên CH cũng là đường cao của tam giác ABC hay CH AB.

Áp dụng định lí Pythagore vào tam giác ACH vuông tại H (do CH AB) có:

AC2 = AH2 + CH2

Do đó CH=AC2AH2=a2a22=a2a24=3a24=a32.

Khi đó, diện tích tam giác ABC có đường cao CH=a32 là:

SΔABC=12CH.AB=12.a32.a=a234 (đvdt)

Thể tích của khối lăng trụ ABC.A’B’C’ có chiều cao A'H=a32 và diện tích đáy SΔABC=a234 là: VABC.A'B'C'=SΔABC.A'H=a234a32=3a38 (đvtt).


Câu 11:

Cho khối tứ diện đều ABCD cạnh a. Chứng minh rằng thể tích của khối tứ diện đó bằng a3212.

Xem đáp án
Cho khối tứ diện đều ABCD cạnh a. Chứng minh rằng thể tích của khối tứ diện đó bằng a^3 căn bậc hai 2 / 12 (ảnh 1)

Gọi M là trung điểm của BC, O là trọng tâm tam giác BCD.

Vì ABCD là hình tứ diện đều nên BCD là tam giác đều.

Mà O là trọng tâm tam giác BCD nên O cũng là tâm đưng tròn ngoại tiếp tam giác BCD.

Do đó AO (BCD).

Xét tam giác đều BCD có: DM là đường trung tuyến (do M là trung điểm của BC) cũng đồng thời là đường cao của tam giác nên DM BC.

Do M là trung điểm của BC nên MC=BC2=a2.

Áp dụng định lí Pythagore vào tam giác DMC vuông tại M (do DM BC) có:

DC2 = DM2 + MC2

Do đó DM=DC2MC2=a2a22=a32.

Vì O là trọng tâm tam giác BCD nên OD=23DM=23.a32=a33.

Do AO (BCD) và DO (BCD) nên AO DO, do đó tam giác ADO vuông tại O.

Áp dụng định lí Pythagore vào tam giác ADO vuông tại O có:

AD2 = AO2 + DO2

Suy ra AO=AD2DO2=a2a332=a2a23=2a23=a63.

Diện tích tam giác BCD đều có đường cao DM là: SΔBCD=12.DM.BC=12.a32.a=a234 (đvdt).

Thể tích của khối tứ diện đều ABCD cạnh a có chiều cao AO=a63 và diện tích đáy SΔBCD=a234 là:

VABCD=13SΔBCD.AO=13.a234.a63=a3212 (đvtt).


Câu 12:

Một thùng đựng rác có dạng khối chóp cụt tứ giác đều với hai cạnh đáy lần lượt dài 2 dm và 3 dm, chiều cao bằng 4 dm. Tính thể tích của thùng đựng rác.

Xem đáp án
Một thùng đựng rác có dạng khối chóp cụt tứ giác đều với hai cạnh đáy lần lượt dài 2 dm và 3 dm, chiều cao (ảnh 1)

Một thùng đựng rác có dạng khối chóp cụt tứ giác đều nên ta có hai đáy là hình vuông.

Diện tích đáy lớn là S1 = 32 = 9 (dm2).

Diện tích đáy bé là S2 = 22 = 4 (dm2).

Vậy thể tích của thùng đựng rác có dạng khối chóp cụt tứ giác đều có chiều cao bằng 4 dm diện tích đáy hai đáy S1 = 9 dm2, S2 = 4 dm2 là:

V=13hS1+S1S2+S2=13.4.9+9.4+4=763 (dm3).


Câu 13:

Quan sát và cho biết chiếc đèn treo ở Hình 96a, trạm khảo sát trắc địa ở Hình 96b có dạng hình gì?

Quan sát và cho biết chiếc đèn treo ở Hình 96a, trạm khảo sát trắc địa ở Hình 96b có dạng hình gì? (ảnh 1)
Xem đáp án

Quan sát Hình 96a và 96b ta thấy:

Chiếc đèn treo ở Hình 96a là hình lăng trụ lục giác đều vì có các mặt bên là hình chữ nhật và vuông góc với mặt đáy, mặt đáy là lục giác đều.

Trạm khảo sát trắc địa là hình chóp cụt tứ giác đều vì có hai đáy là hình vuông và nằm trên hai mặt phẳng song song với nhau; mỗi mặt bên đều là hình thang cân; các đường thẳng chứa cạnh bên đều cùng đi qua một điểm.


Câu 14:

Cho hình chóp đều S.ABCD có các cạnh bên và các cạnh đáy đều bằng a.

a) Chứng minh rằng các tam giác ASC và BSD là tam giác vuông cân.

Xem đáp án
Cho hình chóp đều S.ABCD có các cạnh bên và các cạnh đáy đều bằng a. a) Chứng minh rằng các tam giác  (ảnh 1)

a) Do S.ABCD là hình chóp đều nên SA = SB = SC = SD = a.

Vì ABCD là hình vuông nên AC = BC và ABC^=90°.

Áp dụng định lí Pythagore vào tam giác ABC vuông tại B có

AC2 = AB2 + BC2 = a2 + a2 = 2a2.

Mà AC = BD nên BD2 = AC2 = 2a2.

Xét ∆ASC có: SA2 + SC2 = a2 + a2 = 2a2 = AC2.

Nên theo định lí Pythagore đảo ta có tam giác ASC vuông tại S.

Mà SA = SC nên tam giác ASC vuông cân tại S.

Xét tam giác BSD có: SB2 + SD2 = a2 + a2 = 2a2 = BD2.

Nên theo định lí Pythagore đảo ta có tam giác BSD vuông tại S.

Mà SB = SD nên tam giác BSD vuông cân tại S.


Câu 15:

b) Gọi O là giao điểm của AC và BD, chứng minh rằng đường thẳng SO vuông góc với mặt phẳng (ABCD).

Xem đáp án

b) Do ABCD là hình vuông và O = AC ∩ BD nên O là trung điểm của AC và BD.

Xét ∆ASC vuông cân tại S có: SO là đường trung tuyến (do O là trung điểm của AC) nên cũng đồng thời là đường cao của tam giác. Do đó SO AC.

Xét ∆BSD vuông cân tại S có: SO là đường trung tuyến (do O là trung điểm của BD) nên cũng đồng thời là đường cao của tam giác. Do đó SO BD.

Ta có: SO AC, SO BD và AC ∩ BD = O trong (ABCD).

Do đó SO (ABCD).


Câu 16:

c) Chứng minh rằng góc giữa đường thẳng SA và mặt phẳng (ABCD) bằng 45°.

Xem đáp án

c) Vì SO (ABCD) nên OA là hình chiếu của SA trên (ABCD).

Suy ra góc giữa đường thẳng SA và mặt phẳng (ABCD) bằng góc SAO^

Lại có tam giác ASC là tam giác vuông cân tại S nên SAO^=45°.

Vậy góc giữa đường thẳng SA và mặt phẳng (ABCD) bằng 45°.


Câu 17:

Cho hình lăng trụ đứng ABCD.A’B’C’D’ có đáy ABCD là hình vuông cạnh a. Góc giữa đường thẳng AC’ và mặt phẳng (ABCD) bằng 60°.

a) Chứng minh rằng hai mặt phẳng (ACC’A’) và (BDD’B’) vuông góc với nhau.

Xem đáp án
Cho hình lăng trụ đứng ABCD.A’B’C’D’ có đáy ABCD là hình vuông cạnh a. Góc giữa đường thẳng AC’ và mặt phẳng (ABCD) bằng 60°. (ảnh 1)

a) Ta có ABCD.A’B’C’D’ là hình lăng trụ đứng nên BB’ (ABCD).

Mà AC (ABCD) nên BB’ AC.

Do ABCD là hình vuông nên AC BD.

Ta có: AC BB’, AC BD và BB’ ∩ BD = B trong (BDD’B’).

Suy ra AC (BDD’B’).

Hơn nữa AC (ACC’A’).

Từ đó, ta có (ACC’A’) (BDD’B’).


Câu 18:

b) Tính khoảng cách giữa hai đường thẳng AB và C’D’.

Xem đáp án

b) Vì ABCD.A’B’C’D’ là hình lăng trụ đứng nên C’D’DC là hình chữ nhật.

Do đó CD // C’D’.

Mà CD // AB (do ABCD là hình vuông) nên AB // C’D’.

Khi đó, d(AB, C’D’) = d(B, C’D’). (1)

ABCD.A’B’C’D’ là hình lăng trụ đứng và đáy ABCD là hình vuông nên A’B’C’D’ cũng là hình vuông.

Do đó C’D’ B’C’.

Ta có: C’D’ B’C’;

           C’D’ C’C (do C’D’DC là hình chữ nhật);

           B’C’ ∩ C’C = C’ trong (BCC’B’).

Suy ra C’D’ (B’C’CB).

Mà BC’ (B’C’CB) nên C’D’ BC’.

Khi đó d(B, C’D’) = BC’. (2)

Từ (1) và (2) ta có: d(AB, C’D’) = BC’.

Do ABCD.A’B’C’D’ là hình lăng trụ đứng nên C’C (ABCD).

Khi đó AC là hình chiếu của AC’ trên (ABCD).

Suy ra góc giữa đường thẳng AC’ và mặt phẳng (ABCD) bằng C'AC^=60°.

Áp dụng định lí Pythagore vào tam giác ABC vuông tại B có:

AC2 = AB2 + BC2 = a2 + a2 = 2a2.

Suy ra AC=a2.

Ta có: C’C (ABCD) và AC (ABCD) nên C’C AC.

Xét tam giác C’AC vuông tại C (do C’C AC) có: tanC'AC^=C'CAC

Do đó C'C=AC.tanC'AC^=a2.tan60°=a6.

Do ABCD.A’B’C’D’ là hình lăng trụ đứng nên B’C’CB là hình chữ nhật.

Suy ra C’C BC.

Áp dụng định lí Pythagore vào tam giác C’CB vuông tại C (vì C’C BC) có:

BC’2 = CC’2 + BC2

Suy ra BC'=CC'2+BC2=a62+a2=a7.

Do đó dAB,C'D'=BC'=a7.

Vậy khoảng cách giữa hai đường thẳng AB và C’D’ bằng a7.


Câu 19:

Một chiếc bánh chưng có dạng khối hộp chữ nhật với kích thước ba cạnh là 15 cm, 15 cm và 6 cm. Tính thể tích của chiếc bánh chưng đó.

Xem đáp án
Một chiếc bánh chưng có dạng khối hộp chữ nhật với kích thước ba cạnh là 15 cm, 15 cm và 6 cm. Tính thể tích của chiếc bánh chưng đó. (ảnh 1)

Thể thể tích của chiếc bánh chưng có dạng khối hộp chữ nhật với kích thước ba cạnh là 15 cm, 15 cm và 6 cm là:

V = abc = 15.15.6 = 1 350 (cm3).


Câu 20:

Một miếng pho mát có dạng khối lăng trụ đứng với chiều cao 10 cm và đáy là tam giác vuông cân có cạnh góc vuông bằng 12 cm. Tính khối lượng của miếng pho mát theo đơn vị gam, biết khối lượng riêng của loại pho mát đó là 3 g/cm3.

Xem đáp án
Một miếng pho mát có dạng khối lăng trụ đứng với chiều cao 10 cm và đáy là tam giác vuông cân có cạnh góc (ảnh 1)

Vì đáy của miếng pho mát là tam giác vuông cân có cạnh góc vuông bằng 12 cm nên ta có diện tích đáy là: S=12.12.12=72 (cm2).

Thể tích của miếng pho mát có dạng khối lăng trụ đứng với chiều cao 10 cm và diện tích đáy 73 cm2 là:

V = Sh = 72.10 = 720 (cm3).

Khối lượng của miếng pho mát với khối lượng riêng 3 g/cm3 và thể tích 720 cm3 là:

m = 3.720 = 2 160 (g).


Câu 21:

Một loại đèn đá muối có dạng khối chóp tứ giác đều (Hình 97). Tính theo a thể tích của đèn đá muối đó, giả sử các cạnh đáy và các cạnh bên đều bằng a.

Một loại đèn đá muối có dạng khối chóp tứ giác đều (Hình 97). Tính theo a thể tích của đèn đá muối  (ảnh 1)
Xem đáp án
Một loại đèn đá muối có dạng khối chóp tứ giác đều (Hình 97). Tính theo a thể tích của đèn đá muối  (ảnh 2)

Mô hình hóa đèn đá muối bằng hình chóp tứ giác đều S.ABCD cạnh a.

Vì S.ABCD là hình chóp tứ giác đều nên đáy ABCD là hình vuông nên gọi O là giao điểm của AC và BD. Khi đó O là trung điểm của AC, BD và AC = BD.

Suy ra OA = OB = OC = OD.

Như vậy, O là tâm đường tròn ngoại tiếp hình vuông ABCD.

Do đó, O là chân đường cao của hình chóp S.ABCD hay SO (ABCD).

Mà AC (ABCD) nên SO AC.

Do ABCD là hình vuông nên ABC^=90°, do đó tam giác ABC vuông tại B.

Áp dụng định lí Pythagore trong tam giác ABC vuông tại B có:

AC2 = AB2 + BC2 = a2 + a2 = 2a2.

Suy ra AC=a2. Do đó AO=AC2=a22.

Áp dụng định lí Pythagore trong tam giác SAO vuông tại O (do SO AC) có:

SA2 = AO2 + SO2

Suy ra SO=SA2AO2=a2a222=a22.

Diện tích hình vuông ABCD cạnh a là: SABCD = a2 (đvdt).

Thể tích của khối chóp tứ giác đều S.ABCD có chiều cao SO=a22 và diện tích đáy SABCD = a2 là:

VS.ABCD=13SABCD.SO=13.a2.a22=a326 (đvtt).

Vậy thể tích của đèn đá muối cần tìm là a326.


Câu 22:

Người ta xây dựng một chân tháp bằng bê tông có dạng khối chóp cụt tứ giác đều (Hình 98). Cạnh đáy dưới dài 5 m, cạnh đáy trên dài 2 m, cạnh bên dài 3 m. Biết rằng chân tháp được làm bằng bê tông tươi với giá tiền là 1 470 000 đồng/m3. Tính số tiền để mua bê tông tươi làm chân tháp theo đơn vị đồng.

Người ta xây dựng một chân tháp bằng bê tông có dạng khối chóp cụt tứ giác đều (Hình 98) (ảnh 1)
Xem đáp án
Người ta xây dựng một chân tháp bằng bê tông có dạng khối chóp cụt tứ giác đều (Hình 98) (ảnh 2)

Mô hình hóa chân tháp của bài toán bằng khối chóp cụt tứ giác đều ABCD.A’B’C’D’, với O, O’ lần lượt là tâm của hai đáy ABCD và A’B’C’D’.

Như vậy ta có:

ABCD là hình vuông cạnh 5 có diện tích SABCD = 52 = 25;

A’B’C’D’ là hình vuông cạnh 2 có diện tích SA’B’C’D’ = 22 = 4;

Các cạnh bên A’A, B’B, C’C, D’D có độ dài bằng 3;

OO’ vuông góc với (ABCD) và (A’B’C’D’).

Do ABCD là hình vuông nên ABC^=90°, do đó tam giác ABC vuông tại B.

Áp dụng định lí Pythagore vào tam giác ABC vuông tại B có:

AC2 = AB2 + BC2 = 52 + 52 = 50.

Suy ra AC=52.

Do đó CO=AC2=522 (do O là tâm hình vuông ABCD).

Do A’B’C’D’ là hình vuông nên A'B'C'^=90°, do đó tam giác A’B’C’ vuông tại B’.

Áp dụng định lí Pythagore trong tam giác A’B’C’ vuông tại B’ có:

A’C’2 = A’B’2 + B’C’2 = 22 + 22 = 8.

Suy ra A'C'=22.

Do đó C'O'=A'C'2=222=2 (do O’ là tâm hình vuông A’B’C’D’).

Dễ thấy: (ABCD) ∩ (A’C’CA) = AC;

              (A’B’C’D’) ∩ (A’C’CA) = A’C’.

Mà (ABCD) // (A’B’C’D’).

Suy ra AC // A’C’ hay A’C’CA là hình thang.

Xét hình thang A’C’CA, kẻ C’H AC (H AC).

Vì OO’ (ABCD) và AC (ABCD) nên OO’ AC.

Do đó C’H // OO’ (cùng vuông góc với AC).

Mà O’C’ // OH (do A’C’ // AC)

Suy ra O’C’HO là hình bình hành.

Do đó: OO’ = C’H và OH=C'O'=2.

Suy ra HC=OCOH=5222=322.

Áp dụng định lí Pythagore trong tam giác C’HC vuông tại H (do C’H AC) có:

C’C2 = C’H2 + HC2

Suy ra C'H=C'C2HC2=323222=322.

Do đó OO'=C'H=322.

Thể tích khối chóp cụt tứ giác đều ABCD.A’B’C’D’ với chiều cao OO'=322 và diện tích hai đáy SABCD = 25, SA’B’C’D’ = 4 là:

VABCD.A'B'C'D'=13.32225+25.4+4=3922   (m3).

Như vậy ta có thể tích của chân tháp đã cho bằng 3922 (m3).

Vì chân tháp được làm bằng bê tông tươi với giá tiền là 1 470 000 đồng/m3 nên số tiền để mua bê tông tươi làm chân tháp là:

3922.1  470  00040  538  432 (đồng).

Vậy số tiền để mua bê tông tươi làm chân tháp khoảng 40 538 432 đồng.


 


Bắt đầu thi ngay