Giải SGK Toán 11 Cánh Diều Hàm số lượng giác và đồ thị
Giải SGK Toán 11 Cánh Diều Hàm số lượng giác và đồ thị
-
128 lượt thi
-
62 câu hỏi
-
0 phút
Danh sách câu hỏi
Câu 1:
15/07/2024Guồng nước (hay còn gọi là cọn nước) không chỉ là công cụ phục vụ sản xuất nông nghiệp, mà đã trở thành hình ảnh quen thuộc của bản làng và là một nét văn hoá đặc trưng của đồng bào dân tộc miền núi phía Bắc.
Một chiếc guồng nước có dạng hình tròn bán kính 2,5 m; trục của nó đặt cách mặt nước 2 m. Khi guồng quay đều, khoảng cách h (m) từ một ống đựng nước gắn tại một điểm của guồng đến mặt nước được tính theo công thức h = |y|, trong đó \(y = 2,5\sin \left( {2\pi x - \frac{\pi }{2}} \right) + 2\), với x (phút) là thời gian quay của guồng (x ≥ 0).
(Nguồn: Đại số và Giải tích 11 Nâng cao, NXBGD Việt Nam, 2020).
Khoảng cách h phụ thuộc vào thời gian quay x như thế nào?
Với x ≥ 0, xét hàm số \[y = 2,5\sin \left( {2\pi x - \frac{\pi }{2}} \right) + 2\]
\[ = - 2,5\sin \left( {\frac{\pi }{2} - 2\pi x} \right) + 2\]
\[ = - 2,5\cos \left( {2\pi x} \right) + 2\]
Khi đó h = |y| = |‒2,5cos2πx + 2|.
Vậy khoảng cách h phụ thuộc vào thời gian quay x theo công thức h = |‒2,5cos2πx + 2|.
Câu 2:
02/07/2024Cho hàm số f(x) = x2.
• Với x ∈ ℝ, hãy so sánh f(‒x) và f(x).
• Quan sát parabol (P) là đồ thị của hàm số f(x) = x2 (Hình 19) và cho biết trục đối xứng của (P) là đường thẳng nào.
Xét hàm số f(x) = x2.
• Với x ∈ ℝ, ta có: f(‒x) = (‒x)2 = x2.
Do đó f(‒x) = f(x).
• Trục đối xứng của (P) là đường thẳng x = 0, hay chính là trục Oy.
Câu 3:
03/07/2024Cho hàm số g(x) = x.
• Với x ∈ ℝ, hãy so sánh g(‒x) và ‒g(x).
• Quan sát đường thẳng d là đồ thị của hàm số g(x) = x (Hình 20) và cho biết gốc toạ độ O có là tâm đối xứng của đường thẳng d hay không.
Xét hàm số g(x) = x.
• Với x ∈ ℝ, ta có: g(‒x) = ‒x và ‒g(x) = ‒x.
Do đó g(‒x) = ‒g(x).
• Gốc tọa độ O là tâm đối xứng của đường thẳng d.
Câu 4:
02/07/2024Xét hàm số g(x) = x3 có tập xác định D = ℝ.
∀x ∈ ℝ thì ‒x ∈ ℝ, ta có: g(‒x) = (‒x)3 = ‒x3 = ‒g(x).
Do đó hàm số g(x) = x3 là hàm số lẻ.
Câu 5:
10/07/2024Cho ví dụ về hàm số không là hàm số chẵn và cũng không là hàm số lẻ.
Ví dụ về hàm số không là hàm số chẵn và cũng không là hàm số lẻ:
f(x) = x2 + x; g(x) = 2x3 – 3x2; …
Câu 6:
23/07/2024Cho hàm số y = f(x) xác định trên ℝ và có đồ thị như Hình 21.
Có nhận xét gì về đồ thị hàm số trên mỗi đoạn [a ; a + T], [a + T; a + 2T], [a – T; a]?
Câu 7:
08/07/2024Cho hàm số y = f(x) xác định trên ℝ và có đồ thị như Hình 21.
Lấy điểm M(x0; f(x0)) thuộc đồ thị hàm số với x0 ∈ [a; a + T]. So sánh mỗi giá trị f(x0 + T), f(x0 − T) với f(x0).
Ta có f(x0 + T) = f(x0);
f(x0 − T) = f(x0).
Câu 8:
20/07/2024Cho ví dụ về hàm số tuần hoàn.
Ví dụ về hàm số tuần hoàn:
Cho T là một số hữu tỉ và hàm số f(x) được cho bởi công thức sau:
Ta thấy, hàm số xác định trên ℝ. Xét một số thực tùy ý.
Nếu x là số hữu tỉ thì x + T cũng là số hữu tỉ;
Nếu x là số vô tỉ thì x + T cũng là số vô tỉ.
Do đó f(x + T) = f(x) với mọi x.
Vậy hàm số f(x) là hàm số tuần hoàn.
Câu 9:
02/07/2024Với mỗi số thực x, tồn tại duy nhất điểm M trên đường tròn lượng giác sao cho (OA, OM) = x (rad) (Hình 22). Hãy xác định sinx.
Giả sử tung độ của điểm M là y.
Khi đó ta có sinx = y.Câu 10:
17/07/2024Cho hàm số y = sinx.
Tìm giá trị y tương ứng với giá trị của x trong bảng sau
Thay từng giá trị của x vào hàm số y = sinx ta có bảng sau:
Câu 11:
16/07/2024Trong mặt phẳng tọa độ Oxy, hãy biểu diễn các điểm (x ; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm (x; sinx) với x ∈ [‒π; π] và nối lại ta được đồ thị hàm số y = sinx trên đoạn [‒π; π] (Hình 23).
Lấy thêm một số điểm (x; sinx) với x ∈ [‒π; π] trong bảng sau và nối lại ta được đồ thị hàm số y = sinx trên đoạn [‒π; π] (hình vẽ).
Câu 12:
16/07/2024Làm tương tự như trên đối với các đoạn [‒3π; ‒π], [π; 3π], …, ta có đồ thị hàm số y = sin x trên ℝ được biểu diễn ở Hình 24.
Làm tương tự như trên đối với các đoạn [‒3π; ‒π], [π; 3π], …, ta có đồ thị hàm số y = sin x trên ℝ được biểu diễn ở hình vẽ sau:
Câu 13:
07/07/2024Quan sát đồ thị hàm số y = sinx ở Hình 24.
Nêu tập giá trị của hàm số y = sinx.
Tập giá trị của hàm số y = sinx là [‒1; 1].
Câu 14:
02/07/2024Quan sát đồ thị hàm số y = sinx ở Hình 24.
Gốc toạ độ có là tâm đối xứng của đồ thị hàm số không? Từ đó kết luận tính chẵn, lẻ của hàm số y = sinx.
Gốc toạ độ O là tâm đối xứng của đồ thị hàm số.
Do đó hàm số y = sinx là hàm số lẻ.
Câu 15:
09/07/2024Quan sát đồ thị hàm số y = sinx ở Hình 24.
Bằng cách dịch chuyển đồ thị hàm số y = sinx trên đoạn [‒π; π] song song với trục hoành sang phải theo đoạn có độ dài 2π, ta có nhận được đồ thị hàm số y = sinx trên đoạn [π; 3π] hay không? Hàm số y = sinx có tuần hoàn hay không?
‒ Bằng cách dịch chuyển đồ thị hàm số y = sinx trên đoạn [‒π; π] song song với trục hoành sang phải theo đoạn có độ dài 2π, ta sẽ nhận được đồ thị hàm số y = sinx trên đoạn [π; 3π].
Làm tương tự như trên ta sẽ được đồ thị hàm số y = sinx trên ℝ.
‒ Xét hàm số f(x) = y = sinx trên ℝ, với T = 2π và x ∈ ℝ ta có:
• x + 2π ∈ ℝ và x – 2π ∈ ℝ;
• f(x + 2π) = f(x)
Do đó hàm số y = sinx là hàm số tuần hoàn với chu kì T = 2π.
Câu 16:
23/07/2024Quan sát đồ thị hàm số y = sinx ở Hình 24.
Tìm khoảng đồng biến, nghịch biến của hàm số y = sinx.
Quan sát đồ thị hàm số y = sinx ta thấy:
• Hàm số đồng biến trên mỗi khoảng \(\left( { - \frac{{5\pi }}{2}; - \frac{{3\pi }}{2}} \right);\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right);\left( {\frac{{3\pi }}{2};\frac{{5\pi }}{2}} \right);...\)
Ta có: \(\left( { - \frac{{5\pi }}{2}; - \frac{{3\pi }}{2}} \right) = \left( { - \frac{\pi }{2} - 2\pi ;\frac{\pi }{2} - 2\pi } \right)\);
\[\left( {\frac{{3\pi }}{2};\frac{{5\pi }}{2}} \right) = \left( { - \frac{\pi }{2} + 2\pi ;\frac{\pi }{2} + 2\pi } \right)\];
…
Do đó ta có thể viết hàm số đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k2\pi ;\frac{\pi }{2} + k2\pi } \right)\) với k ∈ ℤ.
• Hàm số nghịch biến trên mỗi khoảng \(\left( { - \frac{{7\pi }}{2}; - \frac{{5\pi }}{2}} \right);\left( { - \frac{{3\pi }}{2}; - \frac{\pi }{2}} \right);\left( {\frac{\pi }{2};\frac{{3\pi }}{2}} \right);...\)
Ta có: \[\left( { - \frac{{3\pi }}{2}; - \frac{\pi }{2}} \right) = \left( {\frac{\pi }{2} - 2\pi ;\frac{{3\pi }}{2} - 2\pi } \right)\];
…
Do đó ta có thể viết hàm số nghịch biến trên mỗi khoảng \(\left( {\frac{\pi }{2} + k2\pi ;\frac{{3\pi }}{2} + k2\pi } \right)\) với k ∈ ℤ.
Câu 17:
23/07/2024Do \(\left( { - \frac{{7\pi }}{2}; - \frac{{5\pi }}{2}} \right) = \left( {\frac{\pi }{2} - 4\pi ;\frac{{3\pi }}{2} - 4\pi } \right) = \left( {\frac{\pi }{2} + \left( { - 2} \right).2\pi ;\frac{{3\pi }}{2} + \left( { - 2} \right).2\pi } \right)\) nên hàm số y = sinx nghịch biến trên khoảng \(\left( { - \frac{{7\pi }}{2}; - \frac{{5\pi }}{2}} \right)\).
Câu 18:
18/07/2024Với mỗi số thực x, tồn tại duy nhất điểm M trên đường tròn lượng giác sao cho (OA, OM) = x (rad) (Hình 25). Hãy xác định cosx.
Giả sử hoành độ của điểm M là y.
Khi đó ta có cosx = y.
Câu 19:
13/07/2024Cho hàm số y = cosx.
Tìm giá trị y tương ứng với giá trị của x trong bảng sau:
Thay từng giá trị của x vào hàm số y = cosx ta có bảng sau:
Câu 20:
12/07/2024Trong mặt phẳng toạ độ Oxy, hãy biểu diễn các điểm (x ; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm (x ; cosx) với x ∈ [‒π; π] và nối lại ta được đồ thị hàm số y = cosx trên đoạn [‒π; π] (Hình 26).
Lấy thêm một số điểm (x; cosx) với x ∈ [‒π; π] trong bảng sau và nối lại ta được đồ thị hàm số y = cosx trên đoạn [‒π; π] (hình vẽ).
Câu 21:
04/07/2024Làm tương tự như trên đối với các đoạn [‒3π; ‒π], [π; 3π], ta có đồ thị hàm số y = cosx trên ℝ được biểu diễn ở Hình 27.
Làm tương tự như trên đối với các đoạn [‒3π; ‒π], [π; 3π], …, ta có đồ thị hàm số y = cosx trên ℝ được biểu diễn ở hình vẽ sau:
Câu 22:
07/07/2024Quan sát đồ thị hàm số y = cosx ở Hình 27.
Nêu tập giá trị của hàm số y = cosx.
Tập giá trị của hàm số y = cosx là [‒1; 1].
Câu 23:
15/07/2024Quan sát đồ thị hàm số y = cosx ở Hình 27.
Trục tung có là trục đối xứng của đồ thị hàm số không? Từ đó kết luận tính chẵn, lẻ của hàm số y = cosx.
Trục tung là trục đối xứng của đồ thị hàm số.
Do đó hàm số y = cosx là hàm số chẵn.
Câu 24:
23/07/2024Quan sát đồ thị hàm số y = cosx ở Hình 27.
Bằng cách dịch chuyển đồ thị hàm số y = cosx trên đoạn [‒π; π] song song với trục hoành sang phải theo đoạn có độ dài 2π, ta nhận được đồ thị hàm số y = cosx trên đoạn [π; 3π] hay không? Hàm số y = cosx có tuần hoàn hay không?
‒ Bằng cách dịch chuyển đồ thị hàm số y = cosx trên đoạn [‒π; π] song song với trục hoành sang phải theo đoạn có độ dài 2π, ta sẽ nhận được đồ thị hàm số y = cosx trên đoạn [π; 3π].
Làm tương tự như trên ta sẽ được đồ thị hàm số y = cosx trên ℝ.
‒ Xét hàm số f(x) = y = cosx trên ℝ, với T = 2π và x ∈ ℝ ta có:
• x + 2π ∈ ℝ và x – 2π ∈ ℝ;
• f(x + 2π) = f(x)
Do đó hàm số y = cosx là hàm số tuần hoàn với chu kì T = 2π.
Câu 25:
14/07/2024Quan sát đồ thị hàm số y = cosx ở Hình 27.
Tìm khoảng đồng biến, nghịch biến của hàm số y = cosx.
Quan sát đồ thị hàm số y = cosx ta thấy:
• Hàm số đồng biến trên mỗi khoảng (‒3π; ‒2π); (‒π; 0); (π; 2π); …
Ta có: (‒3π; ‒2π) = (‒π ‒ 2π; 0 ‒ 2π);
(π; 2π) = (‒π + 2π; 0 + 2π);
…
Do đó ta có thể viết hàm số đồng biến trên mỗi khoảng (‒π + k2π; k2π) với k ∈ ℤ.
• Hàm số nghịch biến trên mỗi khoảng (‒2π; ‒π); (0; π); (2π; 3π); …
Ta có: (‒2π; ‒π) = (0 ‒ 2π; π ‒ 2π);
(2π; 3π) = (0 + 2π; π + 2π);
…
Do đó ta có thể viết hàm số nghịch biến trên mỗi khoảng (k2π; π + k2π) với k ∈ ℤ.
Câu 26:
18/07/2024Hàm số y = cosx đồng biến hay nghịch biến trên khoảng (‒2π; ‒π)?
Do (‒2π; ‒π) = (0 – 2π; π – 2π) nên hàm số nghịch biến trên khoảng (‒2π; ‒π).
Câu 27:
02/07/2024Xét tập hợp \[D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi |k \in \mathbb{Z}} \right\}\]. Với mỗi số thực x ∈ D, hãy nêu định nghĩa tanx.
Nếu cosx ≠ 0, tức \[x \in \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi |k \in \mathbb{Z}} \right\}\] hay x ∈ D thì ta có: \(\tan x = \frac{{\sin x}}{{\cos x}}\).
Câu 28:
09/07/2024Cho hàm số y = tanx.
Tìm giá trị y tương ứng với giá trị của x trong bảng sauThay từng giá trị của x vào hàm số y = tanx ta có bảng sau:
Câu 29:
03/07/2024Trong mặt phẳng toạ độ Oxy, hãy biểu diễn các điểm (x; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm (x; tanx) với \(x \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) và nối lại ta được đồ thị hàm số y = tan x trên khoảng \(x \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) (Hình 28).
Lấy thêm một số điểm (x; tanx) với \(x \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) trong bảng sau và nối lại ta được đồ thị hàm số y = tanx trên khoảng \(x \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) (hình vẽ).
Câu 30:
20/07/2024Làm tương tự như trên đối với các khoảng \[\left( {\frac{\pi }{2};\frac{{3\pi }}{2}} \right),\left( { - \frac{{3\pi }}{2}; - \frac{\pi }{2}} \right)\], …, ta có đồ thị hàm số y = tan x trên D được biểu diễn ở Hình 29.
Làm tương tự như trên đối với các \[\left( {\frac{\pi }{2};\frac{{3\pi }}{2}} \right),\left( { - \frac{{3\pi }}{2}; - \frac{\pi }{2}} \right)\], …, ta có đồ thị hàm số y = tanx trên D được biểu diễn ở hình vẽ sau:
Câu 31:
02/07/2024Quan sát đồ thị hàm số y = tanx ở Hình 29.
Nêu tập giá trị của hàm số y = tanx.
Tập giá trị của hàm số y = tanx là ℝ.
Câu 32:
23/07/2024Quan sát đồ thị hàm số y = tanx ở Hình 29.
Gốc toạ độ có là tâm đối xứng của đồ thị hàm số không? Từ đó kết luận tính chẵn, lẻ của hàm số y = tanx.
Gốc toạ độ là tâm đối xứng của đồ thị hàm số y = tanx.
Do đó hàm số y = tanx là hàm số lẻ.
Câu 33:
22/07/2024Quan sát đồ thị hàm số y = tanx ở Hình 29.
Bằng cách dịch chuyển đồ thị hàm số y = tanx trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) song song với trục hoành sang phải theo đoạn có độ dài π, ta nhận được đồ thị hàm số y = tanx trên khoảng \(\left( {\frac{\pi }{2};\frac{{3\pi }}{2}} \right)\) hay không? Hàm số y = tanx có tuần hoàn hay không?
‒ Bằng cách dịch chuyển đồ thị hàm số y = tanx trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) song song với trục hoành sang phải theo đoạn có độ dài π, ta sẽ nhận được đồ thị hàm số y = tanx trên khoảng \(\left( {\frac{\pi }{2};\frac{{3\pi }}{2}} \right)\).
Làm tương tự như trên ta sẽ được đồ thị hàm số y = tanx trên \[\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi |k \in \mathbb{Z}} \right\}\].
‒ Xét hàm số f(x) = y = tanx trên \[D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi |k \in \mathbb{Z}} \right\}\], với T = π và x ∈ D ta có:
• x + π ∈ D và x – π ∈ D;
• f(x + π) = f(x)
Do đó hàm số y = tanx là hàm số tuần hoàn với chu kì T = π.
Câu 34:
18/07/2024Quan sát đồ thị hàm số y = tanx ở Hình 29.
Tìm khoảng đồng biến, nghịch biến của hàm số y = tanx.
Quan sát đồ thị hàm số y = tanx ở Hình 29, ta thấy: đồ thị hàm số đồng biến trên mỗi khoảng \(\left( { - \frac{{3\pi }}{2}; - \frac{\pi }{2}} \right);\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right);\left( {\frac{\pi }{2};\frac{{3\pi }}{2}} \right);...\)
Ta có: \(\left( { - \frac{{3\pi }}{2}; - \frac{\pi }{2}} \right) = \left( { - \frac{\pi }{2} - \pi ;\frac{\pi }{2} - \pi } \right);\)
\(\left( {\frac{\pi }{2};\frac{{3\pi }}{2}} \right) = \left( { - \frac{\pi }{2} + \pi ;\frac{\pi }{2} + \pi } \right);\)
…
Do đó ta có thể viết đồ thị hàm số y = tanx đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k\pi ;\frac{\pi }{2} + k\pi } \right)\) với k ∈ ℤ.
Câu 35:
20/07/2024Với mỗi số thực m, tìm số giao điểm của đường thẳng y = m và đồ thị hàm số y = tanx trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).
Xét đồ thị của hàm số y = m và đồ thị của hàm số y = tanx trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) (hình vẽ).
Từ đồ thị của hai hàm số trên hình vẽ, ta thấy mọi m ∈ ℝ thì hai đồ thị trên luôn cắt nhau tại 1 điểm.
Vậy số giao điểm của đường thẳng y = m (m ∈ ℝ) và đồ thị hàm số y = tanx trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) là 1.
Câu 36:
15/07/2024Xét tập hợp E = ℝ \ {kπ | k ∈ ℤ}. Với mỗi số thực x ∈ E, hãy nêu định nghĩa cotx.
Nếu sinx ≠ 0, tức x ∈ ℝ \ {kπ | k ∈ ℤ} hay x ∈ E thì ta có: \(\cot x = \frac{{\cos x}}{{\sin x}}\).
Câu 37:
22/07/2024Cho hàm số y = cotx.
Tìm giá trị y tương ứng với giá trị của x trong bảng sau
Thay từng giá trị của x vào hàm số y = cotx ta có bảng sau:
Câu 38:
20/07/2024Trong mặt phẳng toạ độ Oxy, hãy biểu diễn các điểm (x; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm (x; cotx) với x ∈ (0; π) và nối lại ta được đồ thị hàm số y = cotx trên khoảng (0; π) (Hình 30).
Lấy thêm một số điểm (x; cotx) với x ∈ (0; π) trong bảng sau và nối lại ta được đồ thị hàm số y = cotx trên khoảng x ∈ (0; π) (hình vẽ).
Câu 39:
23/07/2024Làm tương tự như trên đối với các khoảng (π; 2π), (‒π; 0), (‒2π; ‒π), …, ta có đồ thị hàm số y = cotx trên E được biểu diễn ở Hình 31.
Làm tương tự như trên đối với các \[\left( {\frac{\pi }{2};\frac{{3\pi }}{2}} \right),\left( { - \frac{{3\pi }}{2}; - \frac{\pi }{2}} \right)\], …, ta có đồ thị hàm số y = cotx trên D được biểu diễn ở hình vẽ sau:
Câu 40:
10/07/2024Quan sát đồ thị hàm số y = cotx ở Hình 31.
Tập giá trị của hàm số y = cotx là ℝ.
Câu 41:
20/07/2024Quan sát đồ thị hàm số y = cotx ở Hình 31.
Gốc toạ độ có là tâm đối xứng của đồ thị hàm số không? Từ đó kết luận tính chẵn, lẻ của hàm số y = cotx.
Gốc toạ độ là tâm đối xứng của đồ thị hàm số y = cotx.
Do đó hàm số y = cotx là hàm số lẻ.
Câu 42:
22/07/2024Bằng cách dịch chuyển đồ thị hàm số y = cotx trên khoảng (0; π) song song với trục hoành sang phải theo đoạn có độ dài π, ta nhận được đồ thị hàm số y = cotx trên khoảng (π; 2π) hay không? Hàm số y = cotx có tuần hoàn hay không?
‒ Bằng cách dịch chuyển đồ thị hàm số y = cotx trên khoảng (0; π) song song với trục hoành sang phải theo đoạn có độ dài π, ta sẽ nhận được đồ thị hàm số y = cotx trên khoảng (π; 2π).
Làm tương tự như trên ta sẽ được đồ thị hàm số y = cotx trên ℝ \ {kπ | k ∈ ℤ}.
‒ Xét hàm số f(x) = y = cotx trên D = ℝ \ {kπ | k ∈ ℤ}, với T = π và x ∈ D ta có:
• x + π ∈ D và x – π ∈ D;
• f(x + π) = f(x)
Do đó hàm số y = cotx là hàm số tuần hoàn với chu kì T = π.
Câu 43:
23/07/2024Quan sát đồ thị hàm số y = cotx ở Hình 31.
Tìm khoảng đồng biến, nghịch biến của hàm số y = cotx.
Quan sát đồ thị hàm số y = cotx ở Hình 31, ta thấy: đồ thị hàm số nghịch biến trên mỗi khoảng (‒2π; ‒π); (‒π; 0); (0; π); (π; 2π); …
Ta có: (‒2π; ‒π) = (0 ‒ 2π; π – 2π);
(‒π; 0) = (0 – π; π ‒ π);
(π; 2π) = (0 + π; π + π);
…
Do đó ta có thể viết đồ thị hàm số y = cotx nghịch biến trên mỗi khoảng (kπ; π + kπ) với k ∈ ℤ.
Câu 44:
17/07/2024Với mỗi số thực m, tìm số giao điểm của đường thẳng y = m và đồ thị hàm số y = cotx trên khoảng (0; π).
Xét đồ thị của hàm số y = m và đồ thị của hàm số y = cotx trên khoảng (0; π) (hình vẽ).
Từ đồ thị của hai hàm số trên hình vẽ, ta thấy mọi m ∈ ℝ thì hai đồ thị trên luôn cắt nhau tại 1 điểm.
Vậy số giao điểm của đường thẳng y = m (m ∈ ℝ) và đồ thị hàm số y = cotx trên khoảng (0; π) là 1.
Câu 45:
23/07/2024Dùng đồ thị hàm số, tìm giá trị của x trên đoạn [‒2π; 2π] để:
Hàm số y = sinx nhận giá trị bằng 1;Đồ thị hàm số y = sinx:
Quan sát đồ thị hàm số y = sinx trên đoạn [‒2π; 2π] ta thấy hàm số y = sinx nhận giá trị bằng 1 tại \(x \in \left\{ { - \frac{{3\pi }}{2};\frac{\pi }{2}} \right\}\).
Câu 46:
18/07/2024Dùng đồ thị hàm số, tìm giá trị của x trên đoạn [‒2π; 2π] để:
Hàm số y = sinx nhận giá trị bằng 0;
Đồ thị hàm số y = sinx:
Quan sát đồ thị hàm số y = sinx trên đoạn [‒2π; 2π] ta thấy hàm số y = sinx nhận giá trị bằng 0 tại x ∈ {‒2π; ‒π; 0; π; 2π}.
Câu 47:
05/07/2024Dùng đồ thị hàm số, tìm giá trị của x trên đoạn [‒2π; 2π] để:
Hàm số y = cosx nhận giá trị bằng ‒1;
Đồ thị hàm số y = cosx:
Quan sát đồ thị hàm số y = cosx trên đoạn [‒2π; 2π] ta thấy hàm số y = cosx nhận giá trị bằng ‒1 tại x ∈ {‒π; π}.
Câu 48:
23/07/2024Dùng đồ thị hàm số, tìm giá trị của x trên đoạn [‒2π; 2π] để:
Hàm số y = cosx nhận giá trị bằng 0.
Đồ thị hàm số y = cosx:
Quan sát hai đồ thị hàm số y = cosx trên đoạn [‒2π; 2π] ta thấy hàm số y = cosx nhận giá trị bằng 0 tại \(x \in \left\{ { - \frac{{3\pi }}{2}; - \frac{\pi }{2};\frac{\pi }{2};\frac{{3\pi }}{2}} \right\}\).
Câu 49:
15/07/2024Dùng đồ thị hàm số, tìm giá trị của x trên khoảng \(\left( { - \pi ;\frac{{3\pi }}{2}} \right)\) để:
Hàm số y = tanx nhận giá trị bằng ‒1;
Xét đồ thị hàm số y = ‒1 và đồ thị hàm số y = tanx trên khoảng \(\left( { - \pi ;\frac{{3\pi }}{2}} \right)\):
Quan sát đồ thị của hai hàm số, ta thấy hàm số y = tanx trên khoảng \(\left( { - \pi ;\frac{{3\pi }}{2}} \right)\) nhận giá trị bằng ‒1 tại \[x \in \left\{ { - \frac{\pi }{4};\frac{\pi }{4}} \right\}\].
Câu 50:
10/07/2024Dùng đồ thị hàm số, tìm giá trị của x trên khoảng \(\left( { - \pi ;\frac{{3\pi }}{2}} \right)\) để:
Hàm số y = tanx nhận giá trị bằng 0;
Xét đồ thị hàm số y = tanx trên khoảng \(\left( { - \pi ;\frac{{3\pi }}{2}} \right)\):
Quan sát hình vẽ, ta thấy hàm số y = tanx trên khoảng \(\left( { - \pi ;\frac{{3\pi }}{2}} \right)\) nhận giá trị bằng 0 tại x ∈ {0; π}.
Câu 51:
23/07/2024Dùng đồ thị hàm số, tìm giá trị của x trên khoảng \(\left( { - \pi ;\frac{{3\pi }}{2}} \right)\) để:
Hàm số y = cotx nhận giá trị bằng 1;
Xét đồ thị hàm số y = 1 và đồ thị hàm số y = cotx trên khoảng \(\left( { - \pi ;\frac{{3\pi }}{2}} \right)\):
Quan sát đồ thị của hai hàm số, ta thấy hàm số y = cotx trên khoảng \(\left( { - \pi ;\frac{{3\pi }}{2}} \right)\) nhận giá trị bằng 1 tại \[x \in \left\{ { - \frac{{3\pi }}{4};\frac{\pi }{4};\frac{{5\pi }}{4}} \right\}\].
Câu 52:
23/07/2024Xét sự biến thiên của mỗi hàm số sau trên các khoảng tương ứng:
y = sinx trên khoảng \(\left( { - \frac{{9\pi }}{2}; - \frac{{7\pi }}{2}} \right),\left( {\frac{{21\pi }}{2};\frac{{23\pi }}{2}} \right)\);
Xét hàm số y = sinx:
Do \[\left( { - \frac{{9\pi }}{2}; - \frac{{7\pi }}{2}} \right) = \left( { - \frac{\pi }{2} - 4\pi ;\frac{\pi }{2} - 4\pi } \right)\] nên hàm số y = sinx đồng biến trên khoảng \(\left( { - \frac{{9\pi }}{2}; - \frac{{7\pi }}{2}} \right)\).
Do \(\left( {\frac{{21\pi }}{2};\frac{{23\pi }}{2}} \right) = \left( {\frac{\pi }{2} + 10\pi ;\frac{{3\pi }}{2} + 10\pi } \right)\) nên hàm số y = sinx nghịch biến trên khoảng \(\left( {\frac{{21\pi }}{2};\frac{{23\pi }}{2}} \right)\).
Câu 53:
13/07/2024Dùng đồ thị hàm số, tìm giá trị của x trên khoảng \(\left( { - \pi ;\frac{{3\pi }}{2}} \right)\) để:
Hàm số y = cotx nhận giá trị bằng 0.Xét đồ thị hàm số y = cotx trên khoảng \(\left( { - \pi ;\frac{{3\pi }}{2}} \right)\):
Quan sát hình vẽ, ta thấy hàm số y = cotx trên khoảng \(\left( { - \pi ;\frac{{3\pi }}{2}} \right)\) nhận giá trị bằng 0 tại \[x \in \left\{ { - \frac{\pi }{2};\frac{\pi }{2}} \right\}\].
Câu 54:
23/07/2024Xét sự biến thiên của hàm số sau trên các khoảng tương ứng:
y = cosx trên khoảng (‒20π; ‒19π), (‒9π; ‒8π).
Xét hàm số y = cosx:
Do (‒20π; ‒19π) = (0 ‒ 20π; π ‒ 20π) nên hàm số y = cosx nghịch biến trên khoảng (‒20π; ‒19π).
Do (‒9π; ‒8π) = (‒π – 8π; 0 ‒ 8π) nên hàm số y = cosx đồng biến trên khoảng (‒9π; ‒8π).
Câu 55:
23/07/2024Dùng đồ thị hàm số, hãy cho biết:
Với mỗi m ∈ [‒1;1], có bao nhiêu giá trị \(\alpha \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) sao cho sinα = m;
Xét đồ thị hàm số y = m (m ∈ [‒1;1]) và đồ thị hàm số y = sinx trên \[\left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\]:
Từ đồ thị của hai hàm số ở hình vẽ trên, ta thấy với mỗi m ∈ [‒1;1] thì hai đồ thị cắt nhau tại 1 điểm.
Vậy với mỗi m ∈ [‒1;1] sẽ có 1 giá trị \(\alpha \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\) sao cho sinα = m.
Câu 56:
22/07/2024Dùng đồ thị hàm số, hãy cho biết:
Xét đồ thị hàm số y = m (m ∈ [‒1;1]) và đồ thị hàm số y = cosx trên [0; π]:
Từ đồ thị của hai hàm số ở hình vẽ trên, ta thấy với mỗi m ∈ [‒1;1] thì hai đồ thị cắt nhau tại 1 điểm.
Vậy m ∈ [‒1;1] sẽ có 1 giá trị α ∈ [0; π] sao cho cosα = m.
Câu 57:
22/07/2024Dùng đồ thị hàm số, hãy cho biết:
Với mỗi m ∈ ℝ, có bao nhiêu giá trị \(\alpha \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) sao cho tanα = m;
Xét đồ thị hàm số y = m (m ∈ ℝ) và đồ thị hàm số y = tanx trên \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\):
Từ đồ thị của hai hàm số ở hình vẽ trên, ta thấy với mỗi m ∈ ℝ thì hai đồ thị cắt nhau tại 1 điểm.
Vậy với mỗi m ∈ ℝ sẽ có 1 giá trị \(\alpha \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) sao cho tanα = m.
Câu 58:
20/07/2024Dùng đồ thị hàm số, hãy cho biết:
Với mỗi m ∈ ℝ, có bao nhiêu giá trị α ∈ (0; π) sao cho cotα = m.
Xét đồ thị hàm số y = m (m ∈ ℝ) và đồ thị hàm số y = cotx trên (0; π):
Từ đồ thị của hai hàm số ở hình vẽ trên, ta thấy với mỗi m ∈ ℝ thì hai đồ thị cắt nhau tại 1 điểm.
Vậy với mỗi m ∈ ℝ sẽ có 1 giá trị α ∈ (0; π) sao cho cotα = m.
Câu 59:
18/07/2024Xét tính chẵn, lẻ của các hàm số:
a) y = sinx cosx;
b) y = tanx + cotx;
c) y = sin2x.
a) Xét hàm số f(x) = y = sinx cosx có tập xác định D = ℝ:
• ∀x ∈ D thì ‒x ∈ D;
• f(‒x) = sin(‒x) . cos(‒x) = ‒sinx cosx = ‒f(x).
Do đó hàm số y = sinx cosx là hàm số lẻ.
b) Xét hàm số f(x) = y = tanx + cotx có tập xác định \(D = \mathbb{R}\backslash \left\{ {k\pi ;\frac{\pi }{2} + k\pi |k \in \mathbb{Z}} \right\}\):
• ∀x ∈ D thì ‒x ∈ D;
• f(‒x) = tan(‒x) + cot(‒x) = (‒tanx) + (‒cotx) = ‒(tanx + cotx) = ‒f(x).
Do đó hàm số y = tanx + cotx là hàm số lẻ.
c) Xét hàm số f(x) = y = sin2x có tập xác định D = ℝ:
• ∀x ∈ D thì ‒x ∈ D;
• f(‒x) = sin2(‒x) = (‒sinx)2 = sin2x = f(x).
Do đó hàm số y = sin2x là hàm số chẵn.
Câu 60:
09/07/2024Một dao động điều hoà có phương trình li độ dao động là: x = Acos(ωt + φ), trong đó A, φ, ω là các hằng số (ω > 0). Khi đó, chu kì T của dao động là \(T = \frac{{2\pi }}{\omega }\).
Xác định giá trị của li độ khi t = 0, \(t = \frac{T}{4},t = \frac{T}{2},t = \frac{{3T}}{4}\), t = T.
Từ \(T = \frac{{2\pi }}{\omega }\) ta có \(\omega = \frac{{2\pi }}{T}\).
Khi đó ta có phương trình li độ là \(x = A\cos \left( {\frac{{2\pi }}{T}.t + \varphi } \right)\).
• t = 0 thì \(x = A\cos \left( {\frac{{2\pi }}{T}.0 + \varphi } \right) = A\cos \varphi \);
• \(t = \frac{T}{4}\) thì \(x = A\cos \left( {\frac{{2\pi }}{T}.\frac{T}{4} + \varphi } \right) = A\cos \left( {\frac{\pi }{2} + \varphi } \right)\);
• \(t = \frac{T}{2}\) thì \(x = A\cos \left( {\frac{{2\pi }}{T}.\frac{T}{2} + \varphi } \right) = A\cos \left( {\pi + \varphi } \right) = - A\cos \varphi \);
• \(t = \frac{{3T}}{4}\) thì \(x = A\cos \left( {\frac{{2\pi }}{T}.\frac{{3T}}{4} + \varphi } \right) = A\cos \left( {\frac{{3\pi }}{2} + \varphi } \right) = - A\cos \left( {\frac{\pi }{2} + \varphi } \right)\);
• t = T thì \(x = A\cos \left( {\frac{{2\pi }}{T}.T + \varphi } \right) = A\cos \left( {2\pi + \varphi } \right) = A\cos \varphi \).
Câu 61:
13/07/2024Một dao động điều hoà có phương trình li độ dao động là: x = Acos(ωt + φ), trong đó A, φ, ω là các hằng số (ω > 0). Khi đó, chu kì T của dao động là \(T = \frac{{2\pi }}{\omega }\).
Vẽ đồ thị biểu diễn li độ của dao động điều hoà trên đoạn [0; 2T] trong mỗi trường hợp sau:
A = 3 và φ = 0; A = 3 và \(\varphi = - \frac{\pi }{2}\); A = 3 và \(\varphi = \frac{\pi }{2}\).
Từ \(T = \frac{{2\pi }}{\omega }\) ta có \(\omega = \frac{{2\pi }}{T}\).
Khi đó ta có phương trình li độ là \(x = A\cos \left( {\frac{{2\pi }}{T}.t + \varphi } \right)\).
* Với A = 3 và φ = 0 thay vào phương trình li độ \(x = A\cos \left( {\frac{{2\pi }}{T}.t + \varphi } \right)\) ta có:
\(x = 3\cos \left( {\frac{{2\pi }}{T}.t} \right)\).
• t = 0 thì x = 3cos0 = 3;
• \(t = \frac{T}{4}\) thì \(x = 3\cos \left( {\frac{{2\pi }}{T}.\frac{T}{4}} \right) = 3\cos \frac{\pi }{2} = 0\);
• \(t = \frac{T}{2}\) thì \(x = 3\cos \left( {\frac{{2\pi }}{T}.\frac{T}{2}} \right) = 3\cos \pi = - 3\)
• \(t = \frac{{3T}}{4}\) thì \(x = 3\cos \left( {\frac{{2\pi }}{T}.\frac{{3T}}{4}} \right) = 3\cos \frac{{3\pi }}{2} = 0\);
• t = T thì \(x = 3\cos \left( {\frac{{2\pi }}{T}.T} \right) = 3\cos 2\pi = 3\)
‒ Vẽ đồ thị biểu diễn li độ của dao động điều hoà \(x = 3\cos \left( {\frac{{2\pi }}{T}.t} \right)\) trên đoạn [0; 2T]:
Xét hàm số \(x = 3\cos \left( {\frac{{2\pi }}{T}.t} \right)\) có chu kì là T.
Ta vẽ đồ thị hàm số \(x = 3\cos \left( {\frac{{2\pi }}{T}.t} \right)\) trên đoạn [0; T] theo bảng sau:
Bằng cách dịch chuyển đồ thị hàm số \(x = 3\cos \left( {\frac{{2\pi }}{T}.t} \right)\) trên đoạn [0; T] song song với trục hoành sang phải theo đoạn có độ dài T, ta sẽ nhận được đồ thị hàm số \(x = 3\cos \left( {\frac{{2\pi }}{T}.t} \right)\) trên đoạn [T; 2T].
Từ đó ta vẽ được đồ thị biểu diễn li độ của dao động điều hoà \(x = 3\cos \left( {\frac{{2\pi }}{T}.t} \right)\) trên đoạn [0; 2T] như sau:
* Với A = 3 và \(\varphi = - \frac{\pi }{2}\) thay vào phương trình li độ \(x = A\cos \left( {\frac{{2\pi }}{T}.t + \varphi } \right)\) ta có:
\(x = 3\cos \left( {\frac{{2\pi }}{T}.t - \frac{\pi }{2}} \right)\)\[ = 3\cos \left( {\frac{\pi }{2} - \frac{{2\pi }}{T}.t} \right) = 3\sin \left( {\frac{{2\pi }}{T}.t} \right)\]
• t = 0 thì \(x = 3\sin \left( {\frac{{2\pi }}{T}.0} \right) = 3\sin 0 = 0\)
• \(t = \frac{T}{4}\) thì \(x = 3\sin \left( {\frac{{2\pi }}{T}.\frac{T}{4}} \right) = 3\sin \frac{\pi }{2} = 3\);
• \(t = \frac{T}{2}\) thì \(x = 3\sin \left( {\frac{{2\pi }}{T}.\frac{T}{2}} \right) = 3\sin \pi = 0\);
• \(t = \frac{{3T}}{4}\) thì \[x = 3\sin \left( {\frac{{2\pi }}{T}.\frac{{3T}}{4}} \right) = 3\sin \frac{{3\pi }}{2} = - 3\];
• t = T thì \[x = 3\sin \left( {\frac{{2\pi }}{T}.T} \right) = 3\sin 2\pi = 0\].
‒ Vẽ đồ thị biểu diễn li độ của dao động điều hoà \(x = 3\sin \left( {\frac{{2\pi }}{T}.t} \right)\) trên đoạn [0; 2T]:
Xét hàm số \(x = 3\sin \left( {\frac{{2\pi }}{T}.t} \right)\) có chu kì là T.
Ta vẽ đồ thị hàm số \(x = 3\sin \left( {\frac{{2\pi }}{T}.t} \right)\) trên đoạn [0; T] theo bảng sau:
Bằng cách dịch chuyển đồ thị hàm số \(x = 3\sin \left( {\frac{{2\pi }}{T}.t} \right)\) trên đoạn [0; T] song song với trục hoành sang phải theo đoạn có độ dài T, ta sẽ nhận được đồ thị hàm số \(x = 3\sin \left( {\frac{{2\pi }}{T}.t} \right)\) trên đoạn [T; 2T].
Từ đó ta vẽ được đồ thị biểu diễn li độ của dao động điều hoà \(x = 3\sin \left( {\frac{{2\pi }}{T}.t} \right)\) trên đoạn [0; 2T] như sau:
* Với A = 3 và \(\varphi = \frac{\pi }{2}\) thay vào phương trình li độ \(x = A\cos \left( {\frac{{2\pi }}{T}.t + \varphi } \right)\) ta có:
\[x = 3\cos \left( {\frac{{2\pi }}{T}.t + \frac{\pi }{2}} \right) = - 3\cos \left[ {\pi - \left( {\frac{{2\pi }}{T}.t + \frac{\pi }{2}} \right)} \right]\]
\( = - 3\cos \left( {\frac{\pi }{2} - \frac{{2\pi }}{T}.t} \right) = - 3\sin \left( {\frac{{2\pi }}{T}.t} \right)\).
• t = 0 thì \(x = - 3\sin \left( {\frac{{2\pi }}{T}.0} \right) = - 3\sin 0 = 0\)
• \(t = \frac{T}{4}\) thì \[x = 3\sin \left( {\frac{{2\pi }}{T}.\frac{T}{4}} \right) = - 3\sin \frac{\pi }{2} = - 3\];
• \(t = \frac{T}{2}\) thì \(x = - 3\sin \left( {\frac{{2\pi }}{T}.\frac{T}{2}} \right) = - 3\sin \pi = 0\);
• \(t = \frac{{3T}}{4}\) thì \[x = - 3\sin \left( {\frac{{2\pi }}{T}.\frac{{3T}}{4}} \right) = - 3\sin \frac{{3\pi }}{2} = 3\];
• t = T thì \[x = - 3\sin \left( {\frac{{2\pi }}{T}.T} \right) = - 3\sin 2\pi = 0\].
‒ Vẽ đồ thị biểu diễn li độ của dao động điều hoà \(x = - 3\sin \left( {\frac{{2\pi }}{T}.t} \right)\) trên đoạn [0; 2T]:
Đồ thị hàm số \(x = - 3\sin \left( {\frac{{2\pi }}{T}.t} \right)\) là hình đối xứng với đồ thị hàm số \(x = 3\sin \left( {\frac{{2\pi }}{T}.t} \right)\) qua trục hoành:
Câu 62:
12/07/2024Trong bài toán mở đầu, hãy chỉ ra một số giá trị của x để ống đựng nước cách mặt nước 2 m.
Để ống đựng nước cách mặt nước 2 m thì h = |y| = 2
\( \Leftrightarrow \left| {2,5\sin \left( {2\pi x - \frac{\pi }{2}} \right) + 2} \right| = 2 \Leftrightarrow \left| { - 2,5\cos \left( {2\pi x} \right) + 2} \right| = 2\)
\( \Leftrightarrow \left[ \begin{array}{l} - 2,5\cos \left( {2\pi x} \right) + 2 = 2\\ - 2,5\cos \left( {2\pi x} \right) + 2 = - 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\cos \left( {2\pi x} \right) = 0\\\cos \left( {2\pi x} \right) = \frac{8}{5}\end{array} \right.\)
Ta loại trường hợp \[{\rm{cos}}\left( {2\pi x} \right) = \frac{8}{5} > 1\] vì ‒1 ≤ cos(2πx) ≤ 1 với mọi x.
Do đó ta có cos(2πx) = 0.
Ta đã biết cosα = 0 tại những giá trị \[\alpha = \frac{\pi }{2} + k\pi \,\,\left( {k \in \mathbb{Z}} \right)\].
Suy ra cos(2πx) = 0 \( \Leftrightarrow 2\pi x = \frac{\pi }{2} + k\pi \Leftrightarrow x = \frac{1}{4} + \frac{k}{2}\,\,\left( {k \in \mathbb{Z}} \right)\).
Khi k = 0 thì \(x = \frac{1}{4}\) (phút);
Khi k = 1 thì \(x = \frac{1}{4} + \frac{1}{1} = \frac{5}{4}\) (phút);
Khi k = 2 thì \(x = \frac{1}{4} + \frac{2}{1} = \frac{9}{4}\) (phút);
…
Vậy khi guồng quay được \(\frac{1}{4}\) phút; \(\frac{5}{4}\) phút; \(\frac{9}{4}\) phút; … thì ống đựng nước cách mặt nước 2 m.