Trang chủ Lớp 10 Toán Bài 1. Dấu của tam thức bậc hai có đáp án

Bài 1. Dấu của tam thức bậc hai có đáp án

Bài 1. Dấu của tam thức bậc hai có đáp án

  • 197 lượt thi

  • 15 câu hỏi

  • 40 phút

Danh sách câu hỏi

Câu 1:

22/07/2024

Cầu vòm được thiết kế với thanh vòm hình parabol và mặt cầu đi ở giữa. Trong hệ trục tọa độ như hình vẽ, phương trình của cầu vòm là y = h(x) = -0,006x2 + 1,2x – 30. Với giá trị h(x) như thế nào thì tại vị trí x (0 ≤ x ≤ 200), vòm cầu: cao hơn mặt cầu, thấp hơn mặt cầu?

Cầu vòm được thiết kế với thanh vòm hình parabol và mặt cầu đi ở giữa. Trong hệ (ảnh 1)
Xem đáp án

Sau bài học này chúng ta sẽ giải bài toán trên như sau:

Quan sát hình vẽ ta thấy mặt cầu là trục Ox, phần h(x) nằm phía trên mặt cầu nghĩa là h(x) nằm phía trên trục hoành hay là h(x) > 0.

Phần h(x) nằm phía dưới mặt cầu nghĩa là h(x) nằm phía dưới trục hoành hay là h(x) < 0.

Vậy với giá trị của h(x) > 0 thì vòm cầu cao hơn mặt cầu, với giá trị của h(x) < 0 thì vòm cầu thấp hơn mặt cầu.


Câu 2:

25/06/2024

Đồ thị của hàm số y = f(x) = - x2 + x + 3 được biểu diễn trong Hình 1.

Đồ thị của hàm số y = f(x) = - x^2 + x + 3 được biểu diễn trong Hình 1.  (ảnh 1)

a) Biểu thức f(x) là đa thức bậc mấy?

b) Xác định dấu của f(2).

Xem đáp án

a) Biểu thức f(x) là đa thức bậc 2.

b) Dựa vào đồ thị ta thấy với x = 2 thì f(2) = 1 > 0.

Vậy f(2) mang dấu dương.


Câu 3:

14/07/2024

Biểu thức nào sau đây là tam thức bậc hai? Nếu là tam thức bậc hai, hãy xét dấu của nó tại x = 1.

a) f(x) = 2x2 + x – 1;

b) g(x) = – x4 + 2x2 + 1;

c) h(x) = – x2 +2x – 3.

Xem đáp án

a) Biểu thức f(x) = 2x2 + x – 1 có dạng tam thức bậc hai với a = 2, b = 1 và c = -1 .

Với x = 1 thì f(1) = 2.12 + 1 – 1 = 2 > 0.

b) Biểu thức g(x) = – x4 + 2x2 + 1 không có dạng tam thức bậc hai vì bậc của đa thức là bậc 4.

c) Biểu thức h(x) = – x2 +2x – 3 có dạng tam thức bậc hai với a = -1, b = 2 , c = -3.

Với x = 1 thì h(1) = – 12 +. 2 1 – 3 = 2 – 4 < 0.

Câu 4:

18/07/2024

Tìm biệt thức và nghiệm của tam thức bậc hai sau:

a) f(x) = 2x2 – 5x + 2;

b) g(x) = – x2 + 6x – 9;

c) h(x) = 4x2 – 4x + 9.

Xem đáp án

a) Tam thức bậc hai f(x) = 2x2 – 5x + 2 có ∆ = (-5)2 – 4.2.2 = 25 – 16 = 9 > 0. Do đó f(x) có hai nghiệm phân biệt là:

x1 = 5+92.2 = 2 và x2 = 592.2=12.

Vậy biệt thức ∆ = 9 và tam thức có hai nghiệm phân biệt x1 = 2 và x2 = .

b) Tam thức bậc hai g(x) = – x2 + 6x – 9 có ∆ = 62 – 4.(-1).(-9) = 36 – 36 = 0. Do đó g(x) có nghiệm kép là:

x1 = x2 = 6+02.1=3.

Vậy biệt thức ∆ = 0 và tam thức có hai nghiệm kép x = 3.

c) Tam thức bậc hai h(x) = 4x2 – 4x + 9 có ∆ = 42 – 4.4.9 = 16 – 144 = - 128 < 0. Do đó f(x) vô nghiệm.


Câu 5:

12/07/2024

Quan sát đồ thị của các hàm số bậc hai trong các hình dưới đây. Trong mỗi trường hợp hãy cho biết:

- Các nghiệm (nếu có) và dấu của biệt thức ∆.

- Các khoảng giá trị của x mà trên đó f(x) cùng dấu với hệ số của x2.

Quan sát đồ thị của các hàm số bậc hai trong các hình dưới đây. Trong mỗi  (ảnh 1)Quan sát đồ thị của các hàm số bậc hai trong các hình dưới đây. Trong mỗi  (ảnh 2)
Xem đáp án

a) Dựa vào hình vẽ ta thấy đồ thị hàm số không cắt trục hoành nên tam thức f(x) = - x2 + 2x – 2 vô nghiệm.

Ta có ∆ = 22 – 4(-1).(-2) = 4 – 8 = - 4 < 0.

Tam thức f(x) có hệ số a = -1 < 0.

Ta thấy toàn bộ đồ thị hàm số nằm phía dưới trục hoành nên f(x) < 0 với mọi x.

Suy ra f(x) cùng dấu với hệ số a với mọi x.

b) Dựa vào hình vẽ ta thấy đồ thị hàm số cắt trục hoành tại một điểm duy nhất có hoành độ x = 1 nên tam thức f(x) = - x2 + 2x – 1 có một nghiệm duy nhất x = 1.

Ta có ∆ = 22 – 4(-1).(-1) = 4 – 4 = 0.

Tam thức f(x) có hệ số a = -1 < 0.

Ta thấy với x ≠ 1 toàn bộ đồ thị hàm số nằm phía dưới trục hoành nên f(x) < 0 với x ≠ 1 và f(x) = 0 với x = 1.

Suy ra f(x) cùng dấu với hệ số a với x ≠ 1.

c) Dựa vào hình vẽ ta thấy đồ thị hàm số cắt trục hoành tại hai điểm phân biệt có hoành độ lần lượt là x1 = - 1 và x2 = 3 nên tam thức f(x) = - x2 + 2x + 3 có hai nghiệm phân biệt x1 = - 1 và x2 = 3.

Ta có ∆ = 22 – 4.3.(-1) = 4 + 12 = 16 > 0.

Tam thức f(x) có hệ số a = -1 < 0.

Ta thấy với x < - 1 hoặc x > 3 thì đồ thị hàm số nằm phía dưới trục hoành, với -1 < x < 3 thì đồ thị hàm số nằm phía trên trục hoành hay f(x) < 0 với x < -1 hoặc x > 3; f(x) > 0 với -1 < x < 3 và f(x) = 0 tại x = -1 hoặc x = 3.

Suy ra f(x) cùng dấu với hệ số a với x < -1 hoặc x > 3.

d) Dựa vào hình vẽ ta thấy đồ thị hàm số không cắt trục hoành nên tam thức f(x) = x2 + 6x + 10 vô nghiệm.

Ta có ∆ = 62 – 4.1.10 = 36 – 40 = - 4 < 0.

Tam thức f(x) có hệ số a = 1 > 0.

Ta thấy toàn bộ đồ thị hàm số nằm phía trên trục hoành nên f(x) > 0 với mọi x.

Suy ra f(x) cùng dấu với hệ số a với mọi x.

e) Dựa vào hình vẽ ta thấy đồ thị hàm số cắt trục hoành tại một điểm duy nhất có hoành độ x = -3 nên tam thức f(x) = x2 + 6x + 9 có một nghiệm duy nhất x = -3.

Ta có ∆ = 62 – 4.1.9 = 36 – 36 = 0.

Tam thức f(x) có hệ số a = 1 > 0.

Ta thấy với x ≠ -3 toàn bộ đồ thị hàm số nằm phía trên trục hoành nên f(x) > 0 với x ≠ - 3 và f(x) = 0 với x = -3.

Suy ra f(x) cùng dấu với hệ số a với x ≠ -3.

g) Dựa vào hình vẽ ta thấy đồ thị hàm số cắt trục hoành tại hai điểm phân biệt có hoành độ lần lượt là x1 = -4 và x2 = -2 nên tam thức f(x) = x2 + 6x + 8 có hai nghiệm phân biệt x1 = -4 và x2 = -2.

Ta có ∆ = 62 – 4.1.8 = 36 – 32 = 4 > 0.

Tam thức f(x) có hệ số a = 1 > 0.

Ta thấy với x < - 4 hoặc x > -2 thì đồ thị hàm số nằm phía trên trục hoành, với -4 < x < -2 thì đồ thị hàm số nằm phía dưới trục hoành hay f(x) > 0 với x < -4 hoặc x > 2; f(x) < 0 với -4 < x < -2 và f(x) = 0 tại x = -4 hoặc x = -2.

Suy ra f(x) cùng dấu với hệ số a với x < -4 hoặc x > -2.


Câu 6:

19/07/2024

Xét dấu của tam thức bậc hai sau:

a) f(x) = 2x2 – 3x – 2;

b) g(x) = - x2 + 2x – 3.

Xem đáp án

a) Tam thức f(x) = 2x2 – 3x – 2 có ∆ = (-3)2 – 4.2.(-2) = 9 + 16 = 25 > 0. Do đó f(x) có hai nghiệm phân biệt x1 = -12 và x2 = 2 và a = 2 > 0.

Ta có bảng xét dấu sau:

Xét dấu của tam thức bậc hai sau: a) f(x) = 2x^2 – 3x – 2; b) g(x) = - x^2 + 2x – 3. (ảnh 1)

Dựa vào bảng xét dấu ta thấy f(x) âm trong khoảng 12;2 và dương trong hai khoảng ;12 và (2; +∞).

Vậy với x 12;2 thì f(x) < 0 và x ;12  hoặc x (2; +∞) thì f(x) > 0.

b) Tam thức g(x) = - x2 + 2x – 3 có ∆ = 22 – 4.(-1).(-3) = 4 – 12 = - 8 < 0. Do đó g(x) vô nghiệm và a = -1 < 0.

Ta có bảng xét dấu sau:

Xét dấu của tam thức bậc hai sau: a) f(x) = 2x^2 – 3x – 2; b) g(x) = - x^2 + 2x – 3. (ảnh 2)

Dựa vào bảng xét dấu ta thấy g(x) âm với mọi giá trị thực của x.

Vậy g(x) < 0 với mọi x ℝ.


Câu 7:

13/07/2024

Xét dấu tam thức bậc hai h(x) = -0,006x2 + 1,2x – 30 trong bài toán khởi động và cho biết ở khoảng cách nào tính từ đầu cầu O thì vòm cầu: cao hơn mặt cầu, thấp hơn mặt cầu.

Xem đáp án

Ta có h(x) = -0,006x2 + 1,2x – 30 là tam thức bậc hai. h(x) có ∆ = 1,22 – 4.(-0,006).(-30) = 0,72 > 0. Do đó tam thức có hai nghiệm phân biệt là x1 ≈ 170,7 và x2 ≈ 29,3 và a = - 0,006 < 0.

Ta có bảng xét dấu f(x) như sau:

Xét dấu tam thức bậc hai h(x) = -0,006x2 + 1,2x – 30 trong bài toán khởi động và (ảnh 1)

Từ bảng xét dấu ta thấy f(x) dương trong khoảng (29,3; 170,7) và âm trong hai khoảng (-∞; 29,3) và (170,7; +∞).

Kết hợp với điều kiện 0 ≤ x ≤ 200 thì f(x) dương khi x (29,3; 170,7) và f(x) âm khi x [0; 29,3) và (170,7; 200].

Vậy với giá trị của x (29,3; 170,7) thì vòm cầu cao hơn mặt cầu, với giá trị của x nằm trong hai khoảng (-∞; 29,3) và (170,7; +∞) thì vòm cầu thấp hơn mặt cầu.


Câu 8:

14/07/2024

Đa thức nào sau đây là tam thức bậc hai?

a) 4x2 + 3x + 1;

b) x3 + 3x2 – 1;

c) 2x2 + 4x – 1.

Xem đáp án

a) 4x2 + 3x + 1 là tam thức bậc hai với a = 4, b = 3 và c = 1.

b) x3 + 3x2 – 1 không là tam thức bậc hai vì bậc của đa thức là 3.

c) 2x2 + 4x – 1 là tam thức bậc hai với a = 2, b = 4 và c = -1.


Câu 9:

23/07/2024

Xác định giá trị của m để đa thức sau là tam thức bậc hai.

a) (m + 1)x2 + 2x + m;

b) mx3 + 2x2 – x + m;

c) – 5x2 + 2x – m + 1.

Xem đáp án

a) Để đa thức (m + 1)x2 + 2x + m là tam thức bậc hai thì hệ số của x2 phải khác 0.

Suy ra m + 1 ≠ 0 m ≠ - 1.

Vậy với m ≠ - 1 thì đa thức (m + 1)x2 + 2x + m là tam thức bậc hai.

b) Để đa thức mx3 + 2x2 – x + m là tam thức bậc hai thì bậc cao nhất của đa thức là 2 do đó hệ số của x3 phải bằng 0 hay m = 0.

Vậy với m = 0 thì đa thức mx3 + 2x2 – x + m là tam thức bậc hai.

c) Để đa thức – 5x2 + 2x – m + 1 thỏa mãn là tam thức bậc hai với mọi m.


Câu 10:

21/07/2024

Dựa vào đồ thị của các hàm số bậc hai sau đây, hãy lập bảng xét dấu của tam thức bậc hai tương ứng.

Dựa vào đồ thị của các hàm số bậc hai sau đây, hãy lập bảng xét dấu của tam thức (ảnh 1)
Dựa vào đồ thị của các hàm số bậc hai sau đây, hãy lập bảng xét dấu của tam thức (ảnh 2)
Xem đáp án

a) Dựa vào hình vẽ ta thấy:

Đồ thị hàm số cắt trục hoành tại hai điểm phân biệt có hoành độ lần lượt là x1 = - 2 và x2 = 12. Do đó f(x) có hai nghiệm phân biệt x1 = - 2, x2 =  và a = 1 > 0.

Với x thuộc khoảng (-∞; -2) và 12;+ thì đồ thị hàm số nằm phía trên trục hoành hay f(x) > 0 khi x thuộc khoảng (-∞; -2) và 12;+.

Với x thuộc khoảng 2;12 thì đồ thị hàm số nằm dưới trục hoành hay f(x) < 0 khi x 2;12.

Ta có bảng xét dấu f(x) như sau:

Dựa vào đồ thị của các hàm số bậc hai sau đây, hãy lập bảng xét dấu của tam thức (ảnh 3)

b) Dựa vào hình vẽ ta thấy:

Đồ thị hàm số không cắt trục hoành. Do đó g(x) vô nghiệm và a = 1 > 0.

Hơn nữa toàn bộ đồ thị hàm số g(x) nằm phía trên trục hoành với mọi giá trị của x nên g(x) > 0 với mọi x.

Ta có bảng xét dấu f(x) như sau:

Dựa vào đồ thị của các hàm số bậc hai sau đây, hãy lập bảng xét dấu của tam thức (ảnh 4)

c) Dựa vào hình vẽ ta thấy:

Đồ thị hàm số h(x) cắt trục hoành tại một điểm duy nhất có hoành độ x = 23. Do đó h(x) có nghiệm duy nhất x = 23 và a = - 9 < 0.

Với x = 23 thì h(x) = 0;

Với x ≠ 23 thì đồ thị hàm số h(x) nằm hoàn toàn dưới trục hoành nên h(x) < 0 với x ≠ 23.

Khi đó ta có bảng xét dấu:

Dựa vào đồ thị của các hàm số bậc hai sau đây, hãy lập bảng xét dấu của tam thức (ảnh 5)

d) Dựa vào hình vẽ ta thấy:

Đồ thị hàm số không cắt trục hoành. Do đó f(x) vô nghiệm và a = -0,5 < 0.

Hơn nữa toàn bộ đồ thị hàm số f(x) nằm phía dưới trục hoành với mọi giá trị của x nên f(x) < 0 với mọi x.

Ta có bảng xét dấu f(x) như sau:

Dựa vào đồ thị của các hàm số bậc hai sau đây, hãy lập bảng xét dấu của tam thức (ảnh 6)

e) Dựa vào hình vẽ ta thấy:

Đồ thị hàm số cắt trục hoành tại hai điểm phân biệt có hoành độ lần lượt là x1 = - 2 và x2 = 32. Do đó g(x) có hai nghiệm phân biệt x1 = - 2, x2 = 32 và a = -1 < 0.

Với x thuộc khoảng (-∞; -2) và 32;+ thì đồ thị hàm số nằm phía dưới trục hoành hay g(x) < 0 khi x thuộc khoảng (-∞; -2) và 32;+.

Với x thuộc khoảng 2;32 thì đồ thị hàm số nằm trên trục hoành hay g(x) > 0 khi x 2;32.

Ta có bảng xét dấu g(x) như sau:

Dựa vào đồ thị của các hàm số bậc hai sau đây, hãy lập bảng xét dấu của tam thức (ảnh 7)

g) Dựa vào hình vẽ ta thấy:

Đồ thị hàm số h(x) cắt trục hoành tại một điểm duy nhất có hoành độ x = 2. Do đó h(x) có nghiệm duy nhất x = 2  và a = 1 > 0.

Với x = 2 thì h(x) = 0;

Với x ≠ 2 thì đồ thị hàm số h(x) nằm hoàn toàn phía trên trục hoành nên h(x) > 0 với x ≠ 23.

Khi đó ta có bảng xét dấu:

Dựa vào đồ thị của các hàm số bậc hai sau đây, hãy lập bảng xét dấu của tam thức (ảnh 8)

Câu 11:

21/07/2024

Xét dấu của tam thức bậc hai sau đây:

a) f(x) = 2x2 + 4x + 2;

b) f(x) = - 3x2 + 2x + 21;

c) f(x) = - 2x2 + x – 2;

d) f(x) = -4x(x + 3) – 9;

e) f(x) = (2x + 5)(x – 3).

Xem đáp án

a) Tam thức bậc hai f(x) = 2x2 + 4x + 2 có ∆ = 42 – 4.2.2 = 16 – 16 = 0. Do đó f(x) có một nghiệm kép x1 = x2 = - 1 và a = 2 > 0.

Ta có bảng xét dấu sau:

Xét dấu của tam thức bậc hai sau đây: a) f(x) = 2x^2 + 4x + 2; b) f(x) = - 3x^2 + 2x + 21; (ảnh 1)

Vậy f(x) = 2x2 + 4x + 2 mang dấu dương khi x ≠ - 1.

b) Tam thức bậc hai f(x) = - 3x2 + 2x + 21 có ∆ = 22 – 4.(-3).21 = 256 > 0. Do đó f(x) có hai nghiệm phân biệt x1 = 3 và x2 = 73 và a = -3 < 0.

Ta có bảng xét dấu:

Xét dấu của tam thức bậc hai sau đây: a) f(x) = 2x^2 + 4x + 2; b) f(x) = - 3x^2 + 2x + 21; (ảnh 2)

Vậy f(x) = - 3x2 + 2x + 21 dương khi x thuộc khoảng 73;3 và f(x) = - 3x2 + 2x + 21 âm khi x thuộc hai khoảng ;73 và 3;+.

c) Tam thức bậc hai f(x) = - 2x2 + x – 2 có ∆ = 12 – 4.(-2).(-2) = 1 – 16 = -15 < 0. Do đó hàm số vô nghiệm và a = -2 < 0.

Ta có bảng xét dấu:

Xét dấu của tam thức bậc hai sau đây: a) f(x) = 2x^2 + 4x + 2; b) f(x) = - 3x^2 + 2x + 21; (ảnh 3)

Vậy f(x) = - 2x2 + x – 2 âm với mọi giá trị thực của x.

d) Ta có f(x) = -4x(x + 3) – 9 = - 4x2 – 12x – 9.

Xét tam thức f(x) = - 4x2 – 12x – 9 có ∆ = (-12)2 – 4.(-4)(-9) = 144 – 144 = 0. Do đó f(x) có nghiệm kép x1 = x2 32 và a = - 4 < 0.

Ta có bảng xét dấu:

Xét dấu của tam thức bậc hai sau đây: a) f(x) = 2x^2 + 4x + 2; b) f(x) = - 3x^2 + 2x + 21; (ảnh 4)

Vậy f(x) mang dấu âm khi x ≠ 32.

e) Ta có f(x) = (2x + 5)(x – 3) = 2x2 – 6x + 5x – 15 = 2x2 – x – 15.

Tam thức f(x) = 2x2 – x – 15 có ∆ = (-1)2 – 4.2.(-15) = 1 + 120 = 121 > 0. Do đó f(x) có hai nghiệm phân biệt x1 = 3 và x252 và a = 2 > 0.

Ta có bảng xét dấu:

Xét dấu của tam thức bậc hai sau đây: a) f(x) = 2x^2 + 4x + 2; b) f(x) = - 3x^2 + 2x + 21; (ảnh 5)

Vậy f(x) = (2x + 5)(x – 3) âm khi x thuộc khoảng 52;3  và f(x) = (2x + 5)(x – 3) dương khi x thuộc hai khoảng ;52 và (3; +∞).


Câu 12:

18/07/2024

Độ cao (tính bằng mét) của một quả bóng so với vành rổ khi bóng di chuyển được x mét theo phương ngang được mô phỏng bằng hàm số h(x) = - 0,1x2 + x – 1. Trong các khoảng nào của x thì bóng nằm: cao hơn vành rổ, thấp hơn vành rổ và ngang vành rổ? Làm tròn kết quả đến hàng phần mười.

Độ cao (tính bằng mét) của một quả bóng so với vành rổ khi bóng di chuyển được x mét (ảnh 1)
Xem đáp án

Ta có h(x) = -0,1x2 + x – 1 là tam thức bậc hai với a = -0,1, b = 1 và c = -1.

Tam thức bậc hai h(x) = -0,1x2 + x – 1 có ∆ = 12 – 4.(-0,1).(-1) = 0,6 > 0. Do đó h(x) có hai nghiệm phân biệt x1 = 5 + 15, x2 = 5 – 15 và a = -0,1 < 0.

Ta có bảng xét dấu sau:

Độ cao (tính bằng mét) của một quả bóng so với vành rổ khi bóng di chuyển được x mét (ảnh 2)

Suy ra h(x) dương khi x thuộc khoảng 55;5+5 và h(x) âm khi x thuộc hai khoảng ;55 5+5;+.

Dựa vào hình vẽ ta thấy trục Ox chính là vành rổ.

Ta có 551,1 và 5+58,9

Vậy với x thuộc khoảng (1,1; 8,9) thì bóng nằm cao hơn vành rổ và với x thuộc khoảng  (– ∞;1,1) và (8,9 ; + ∞) thì bóng nằm thấp hơn vành rổ và với x 1,1 hoặc x 8,9 thì bóng nằm ngang vành rổ.


Câu 13:

22/07/2024

Một khung dây thép hình chữ nhật có chiều dài 20 cm và chiều rộng 15 cm được uốn lại thành khung hình chữ nhật mới có kích thước (20 + x) cm và (15 – x) cm. Với x nằm trong các khoảng nào thì diện tích của khung sau khi uốn: tăng lên, không thay đổi, giảm đi?

Xem đáp án

Diện tích khung dây thép hình chữ nhật ban đầu là: 20.15 = 300 (cm2).

Diện tích khung hình chữ nhật mới là: (20 + x)(15 – x) = 3005x – x2 (cm2).

Xét hiệu f(x) = 300 – 300 + 5x + x2 = x2 + 5x.

Ta có f(x) = x2 – 5x là tam thức bậc hai có ∆ = 52 – 4.1.0 = 25 > 0. Do đó h(x) có hai nghiệm phân biệt x1 = 0, x2 = -5 và a = 1 > 0.

Khi đó ta có bảng xét dấu:

Một khung dây thép hình chữ nhật có chiều dài 20 cm và chiều rộng 15 cm được uốn lại  (ảnh 1)

Suy ra f(x) âm khi x thuộc khoảng (-5; 0), f(x) dương khi x thuộc hai khoảng (-∞; -5) và (0; +∞).

Vậy với x thuộc khoảng (-5; 0) thì diện tích của khung dây thép tăng lên, x thuộc hai khoảng (-∞; -5) và (0; +∞) thì diện tích của khung dây thép giảm đi, và x = - 5 hoặc x = 0 thì diện tích khung dây thép không đổi.


Câu 14:

14/07/2024

Chứng minh rằng với mọi số thực m ta luôn có 9m2 + 2m > - 3.

Xem đáp án

Ta có: 9m2 + 2m > - 3.

9m2 + 2m + 3 > 0.

Đặt f(m) = 9m2 + 2m + 3.

Ta thấy f(m) là tam thức bậc hai với a = 9, b = 2 và c = 3.

Ta có: ∆ = 22 – 4.9.3 = 4 – 108 = -104 < 0. Do đó f(m) vô nghiệm và a = 9 > 0.

Khi đó ta có bảng xét dấu:

Chứng minh rằng với mọi số thực m ta luôn có 9m^2 + 2m > - 3. (ảnh 1)

Từ bảng xét dấu ta thấy f(m) > 0 với mọi m

9m2 + 2m + 3 > 0 với mọi m hay 9m2 + 2m > - 3 với mọi m.

Vậy 9m2 + 2m > - 3 với mọi m.


Câu 15:

17/07/2024

Tìm giá trị của m để:

a) 2x2 + 3x + m + 1 > 0 với mọi x ℝ;

b) mx2 + 5x – 3 ≤ 0 với mọi x ℝ.

Xem đáp án

a) Xét f(x) = 2x2 + 3x + m + 1 là tam thức bậc hai với a = 2, b = 3, c = m + 1.

Ta có: ∆ = 32 – 4.2.(m + 1) = 9 – 8m – 8 = 1 – 8m.

Vì a = 2 > 0 nên để 2x2 + 3x + m + 1 > 0 với mọi x ℝ thì ∆ < 0

1 – 8m < 0

m > 18.

Vậy với m > 18 thì 2x2 + 3x + m + 1 > 0 với mọi x ℝ.

b) Xét g(x) = mx2 + 5x – 3.

+) Với m = 0 thì g(x) = 5x – 3.

Ta có: 5x – 3 ≤ 0 x ≤ 35.

Do đó với m = 0 không thỏa mãn.

+) Với m ≠ 0 thì g(x) = mx2 + 5x – 3 là tam thức bậc hai với a = m, b = 5, c = - 3.

Ta có ∆ = 52 – 4.m.(-3) = 25 + 12m.

Để mx2 + 5x – 3 ≤ 0 với mọi x ℝ thì

a<0Δ0m<025+12m0m<0m2512m2512.

Vậy với m2512 thì mx2 + 5x – 3 ≤ 0 với mọi x ℝ .


Bắt đầu thi ngay