Câu hỏi:
16/07/2024 133Với giả thiết được cho trong hình, kết quả nào sau đây là đúng?
A. y = 10
B. y = 10
C. y = 5
D. y = 6,45
Trả lời:
Đáp án D
Xét 2 tam giác vuông ΔADO và ΔECO ta có:
(2 góc đối đỉnh)
=> ΔADO ~ ΔECO (g.g)
Vì ΔADO vuông tại A nên áp dụng định lý Pitago ta có:
Xét 2 tam giác vuông ΔCEO (CEO = ) và ΔCAB (CAB = ) có: C chung
Vậy x = 4,8; y = 6,45.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ΔABC ~ ΔDHE với tỉ số đồng dạng . Tỉ số hai đường cao tương ứng của ΔDHE và ΔABC là:
Câu 2:
Tam giác ABC vuông tại A có đường cao AH. Cho biết AB = 3cm; AC = 4cm. Chọn kết luận không đúng.
Câu 4:
Cho tam giác ABC vuông ở A, đường cao AH = 16cm, BH = 8cm.
1. Tính HB.HC bằng:
Câu 5:
Tam giác ABC vuông tại A có đường cao AH. Cho biết AB = 3cm; AC = 4cm. Tính độ dài các đoạn thẳng HA, HB.
Câu 6:
Cho tam giác ABC cân tại A, AC = 20cm, BC = 24cm, các đường cao AD và CE cắt nhau ở H. Tính độ dài HD.
Câu 8:
Cho hình vẽ dưới đây với
Khi đó các mệnh đề
(I) ΔAHB ~ ΔCHA (g - g)
(II) ΔAHC ~ ΔBAC (g - g)
Câu 9:
Cho tam giác ABC cân tại A, đường cao CE. Tính AB, biết BC = 24cm và BE = 9cm.
Câu 10:
Cho tam giác ABC cân tại A. Đường thẳng qua C và vuông góc AB tại CE. Tính AB, biết BC = 18cm và BE = 6,75cm.
Câu 12:
Cho tam giác ABC vuông ở A, đường cao AH.
2. Cho BH = 9cm, HC = 16cm. Tính diện tích của tam giác ABC.
Câu 13:
Cho ΔDHE ~ ΔABC với tỉ số đồng dạng . Có bao nhiêu khẳng định đúng trong các khẳng định sau:
(I) Tỉ số hai đường cao tương ứng của ΔDHE và ΔABC là .
(II) Tỉ số hai đường cao tương ứng của ΔABC và ΔDHE là .
(III) Tỉ số diện tích của ΔABC và ΔDHE là .
(IV) Tỉ số diện tích của ΔDHE và ΔABC là
Câu 14:
Cho tam giác ABC cân tại A, AC = 20cm, BC = 24cm, các đường cao AD và CE cắt nhau ở H. Độ dài AH là:
Câu 15:
Cho tam giác ABC vuông ở A, đường cao AH = 16cm, BH = 8cm.
2. Tính diện tích tam giác ABC.