Câu hỏi:
17/07/2024 142Trong không gian Oxyz , cho ba mặt cầu lần lượt có phương trình là ; và . Gọi M là điểm di động ở ngoài ba mặt cầu và X, Y , Z là các tiếp điểm của các tiếp tuyến vẽ từ M đến ba mặt cầu. Giả sử MX = MY = MZ , khi đó tập hợp các điểm M là đường thẳng có vectơ chỉ phương là
Trả lời:
Đáp án đúng : B
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một hộp dựng bóng tennis có dạng hình trụ. Biết rằng hộp chứa vừa khít ba quả bóng tennis được xếp theo chiều dọc, các quả bóng tennis có kích thước như nhau. Thể tích phần không gian còn trống trong hộp chiếm tỉ lệ a% so với thể tích của hộp bóng tennis. Số a gần nhất với số nào sau đây?
Câu 2:
Cho hai mặt cầu có tâm , bán kính , có tâm bán kính = 5. Lần lượt lấy hai điểm thuộc hai mặt cầu . Gọi K là trung điểm . Khi di chuyển trên thì K quét miền không gian là một khối tròn xoay có thể tích bằng?
Câu 3:
Trong không gian cho bốn mặt cầu có bán kính lần lượt là 2; 3; 3; 2 (đơn vị độ dài) đôi một tiếp xúc nhau. Mặt cầu nhỏ tiếp xúc ngoài với cả bốn mặt cầu nói trên có bán kính bằng
Câu 4:
Người ta thả một viên bi sắt có dạng khối cầu với bán kính nhỏ hơn 4,5cm vào một chiếc cốc hình trụ đang chứa nước thì viên bi sắt đó tiếp xúc với đáy cốc và tiếp xúc với mặt nước sau khi dâng (tham khảo hình vẽ bên). Biết rằng bán kính của đáy cốc bằng 5,4cm và chiều cao của mực nước ban đầu trong lòng cốc bằng 4,5cm. Bán kính của viên bi sắt đó bằng
Câu 5:
Một vật thể đựng đầy nước hình lập phương không có nắp. Khi thả một khối cầu kim loại đặc vào trong hình lập phương thì thấy khối cầu tiếp xúc với tất cả các mặt của hình lập phương đó. Tính bán kính của khối cầu, biết thể tích nước còn lại trong hình lập phương là 10. Giả sử các mặt của hình lập phương có độ dày không đáng kể.
Câu 6:
Trong không gian Oxyz , lấy điểm C trên tia Oz sao cho OC = 1 . Trên hai tia Ox,Oy lần lượt lấy hai điểm A,B thay đổi sao cho OA + OB = OC . Tìm giá trị nhỏ nhất của bán kính mặt cầu ngoại tiếp tứ diện O.ABC ?
Câu 7:
Gọi r , R lần lượt là bán kính mặt cầu nội tiếp và ngoại tiếp tứ diện đều ABCD. Tính tỉ số ?
Câu 8:
Một khối đồ chơi bao gồm khối trụ và khối lăng trụ tam giác đều được xếp chồng lên nhau như hình vẽ.
Biết rằng bán kính đáy khối trụ bằng chiều cao khối trụ, chiều cao khối trụ bằng chiều cao của lăng trụ. Gọi lần lượt là thể tích của khối trụ và khối lăng trụ. Tính .
Câu 9:
Cho hai mặt cầu đồng tâm I, có bán kính lần lượt là . Xét tứ diện ABCD có hai đỉnh A , B nằm trên và hai đỉnh C , D nằm trên . Thể tích lớn nhất của khối tứ diện ABCD bằng
Câu 10:
Cho hình chóp S.ABC có AC = a, AB = và SA vuông góc với mặt phẳng đáy. Gọi M,N lần lượt là hình chiếu vuông góc của A trên SB và SC. Thế tích khối cầu ngoại tiếp hình chóp A.BCNM bằng
Câu 11:
Cho hình chóp S.ABC có và mặt phẳng (SAC) vuông góc với mặt phẳng (ABC) . Tính diện tích xung quanh của mặt cầu ngoại tiếp hình chóp S.ABC.
Câu 12:
Trong một chiếc hộp hình trụ, người ta bỏ vào đấy ba quả banh tenis, biết rằng đáy của hình trụ bằng hình tròn lớn trên quả banh và chiều cao của hình trụ bằng ba lần đường kính của quả banh. Gọi là tổng diện tích của ba quả banh, là diện tích xung quanh của hình trụ. Tỉ số diện tích là
Câu 13:
Cho mặt cầu (S): và hai điểm A(3;-2;6) , B(0;1;0). Giả sử đi qua A , B và cắt (S) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Tính
Câu 14:
Cho mặt cầu (S) tâm I bán kính R . M là điểm thỏa mãn IM = . Hai mặt phẳng (P),(Q) qua M và tiếp xúc với (S) lần lượt tại A và B. Biết góc giữa (P) và (Q) bằng . Độ dài đoạn thẳng AB bằng:
Câu 15:
Một cây thông Noel có dạng hình nón với chiều dài đường sinh bằng 60cm và bán kính đáy r = 10cm. Một chú kiến bắt đầu xuất phát từ một đỉnh nằm trên mặt đáy hình nón và có dự định bò một vòng quanh cây thông sau đó quay trở lại vị trí xuất phát ban đầu. Tính quãng đường ngắn nhất mà chú kiến có thể đi được là bao nhiêu?