Câu hỏi:
12/07/2024 231Tính .
A. P=2017.
B. P=1.
Đáp án chính xác
C. P=0.
D. P=2017!
Trả lời:

Áp dụng công thức logab=1logba, ta được:
P=log2017!2+log2017!3+...+log2017!2017
=log2017!(2.3.4....2017)
=log2017!2017!=1.
Chọn B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Cho a, M, N dương và khác 1. Có bao nhiêu phát biểu đúng trong các phát biểu dưới đây?
(I). Nếu 2lnC=lnA+lnB
(II). (a−1)logax≥0⇔x≥1
(III). MlogaN=NlogaM
(IV). x)=−∞
Xem đáp án »
23/07/2024
5,390
Câu 5:
Cho là các số thực dương khác 1 và P=1logab+1loga2b+...+1loganb theo các bước sau:
I). P=logba+logba2+...+logban
II). P=logb(a1a2a3...an)
III). P=logba1+2+3+...+n
IV). P=n(n+1)logba
Trong các bước trình bày, học sinh đã trình bày sai ở bước nào?
Xem đáp án »
17/07/2024
2,831