Câu hỏi:
21/07/2024 114Cho tam giác ABC vuông tại A, điểm M thuộc cạnh huyền BC. Gọi D, E lần lượt là chân đường vuông góc kẻ từ M đến AB, AC. Tính độ dài nhỏ nhất của DE khi M di chuyển trên BC biết AB = 15cm, AC = 20cm.
A. 9 cm
B. 15 cm
C. 8 cm
D. 12 cm
Trả lời:
Theo DE nhỏ nhất khi M là hình chiếu của A trên BC.
Khi đó DE = AM
Xét tam giác ABC, theo định lý Pytago ta có
BC2 = BA2 + AC2 = 625 => BC = 25
Gọi BM = x thì MC = 25 – x
Xét tam giác AMB vuông tại M, theo định lý Pytago ta có
AM2 = AB2 – BM2 = 152 – x2 = 225 – x2 (1)
Xét tam giác AMC vuông tại M, theo định lý Pytago ta có
AM2 = AC2 – MC2 = 202 – (25 – x)2
ó 225 – x2 = 400 – (625 – 50x + x2)
ó 50x = 450 ó x = 9
Suy ra: AM2 = 225 – x2 = 225 – 81 = 144 => AM = 12
Suy ra DE = AM =12cm
Vậy giá trị nhỏ nhất của DE là 12cm
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình bình hành ABCD có AB = a, BC = b (a > b). Các phân giác trong của góc A, B, C, D tạo thành tứ giác MNPQ. Tính độ dài đường chéo của hình chữ nhật MNPQ theo a, b.
Câu 2:
Cho hình bình hành ABCD có AB = a, BC = b (a > b). Các phân giác trong của góc A, B, C, D tạo thành tứ giác MNPQ. Tứ giác MNPQ là hình gì?
Câu 3:
Cho hình chữ nhật ABCD có AB = a;AD = b. Cho M, N, P, Q là các đỉnh của tứ giác MNPQ và lần lượt thuộc các cạnh AB, BC, CD, DA. Tìm giá trị nhỏ nhất của chu vi tứ giác MNPQ.
Câu 4:
Cho hình thang cân ABCD, đáy nhỏ AB = 6, CD = 18, AD = 10. Gọi I, K, M, L lần lượt là trung điểm của các đoạn BC, CA, AD và BD. Tính độ dài các cạnh AB, AL, AK.
Câu 5:
Cho hình thang cân ABCD, đáy nhỏ AB = 6, CD = 18, AD = 10. Gọi I, K, M, L lần lượt là trung điểm của các đoạn BC, CA, AD và BD. Tứ giác ABKL là hình gì?
Câu 6:
Cho tam giác ABC vuông tại A, điểm M thuộc cạnh huyền BC. Gọi D, E lần lượt là chân đường vuông góc kẻ từ M đến AB, AC. Tứ giác ADME là hình gì?