Câu hỏi:
21/07/2024 150Tính diện tích hình phẳng giới hạn bởi đồ thị (P) và các tiếp tuyến với (P) tại A(1;2); B(4;5)
A. 9/4
B. 4/9
C. 9/8
D. 5/2
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số và các trục tọa độ. Khi đó giá trị của S bằng
Câu 2:
Parabol chia hình tròn có tâm là gốc tọa độ, bán kính bằng thành hai phần có diện tích và , trong đó . Tìm tỉ số
Câu 4:
Cho hai hàm số và . Tìm a và b để F(x) là một nguyên hàm của hàm số f(x)
Câu 5:
Biết luôn có hai số a, b để là nguyên hàm của hàm số f(x) và thỏa mãn . Khẳng định nào dưới đây đúng và đầy đủ nhất?
Câu 6:
Cho hình phẳng (H) giới hạn bởi đường cong , trục hoành và đường thẳng x=e. Khối tròn xoay tạo thành khi quay (H) quanh trục hoành có thể tích bằng bao nhiêu?
Câu 7:
Xét hàm số y = f(x) liên tục trên miền D = [a;b] có đồ thị là một đường cong C. Gọi S là phần giới hạn bởi C và các đường thẳng x = a; x = b Người ta chứng minh được rằng độ dài đường cong S bằng Theo kết quả trên, độ dài đường cong S là phần đồ thị của hàm số f(x) = ln x và bị giới hạn bởi các đường thẳng là với thì giá trị của là bao nhiêu?
Câu 8:
Cho hàm số f(x) xác định trên R\{1} thỏa mãn . Tính S = f(3)-f(-1)
Câu 10:
Cho hình phẳng D giới hạn bởi đường cong cắt trục tọa độ và phần đường thẳng y = 2-x với Tính thể tích khối tròn xoay tạo thành khi quay D quanh trục hoành
Câu 13:
Cho f(x) là hàm liên tục trên đoạn [0;a] thỏa mãn và , trong đó b, c là hai số nguyên dương và b/c là phân số tối giản. Khi đó b+c có giá trị thuộc khoảng nào dưới đây?
Câu 14:
Tìm công thức tính thể tích của khối tròn xoay khi cho hình phẳng giới hạn bởi parabol (P) và đường thẳng y= 2x quay xung quanh trục Ox