Câu hỏi:
22/07/2024 151Tìm hai số tự nhiên a, b(a < b). Biết a + b = 20, BCNN(a, b) = 15.
A. a = 15; b = 25.
B. a = 15; b = 5.
C. a = 15; b = 20.
D. a = 5; b = 15.
Trả lời:
Gọi ƯCLN(a,b) = d ⇒ a = d.m, b = d.n; (m,n) = 1
⇒a+b = d(m+n) ⇒d Ư(a+b) hay dƯ(20)
Vì BCNN(a,b) =15 ⇒15⁝d hay dƯ(15)
⇒d ƯC(15;20)Mà ƯCLN(15;20) = 5 nên d = 1 hoặc d = 5
+) Nếu d = 1⇒a.b = 1.15 = 15 = 3.5
Khi đó a + b = 3 + 5 = 8 (loại)
Hoặc a + b = 1+15 = 16 (loại)
+) Nếu d = 5 thì a.b = 5.15 = 75 = 1.75
Khi đó a + b = 15 + 5 = 20 (thỏa mãn)
Hoặc a + b = 1 + 75 = 76 (loại)
Vậy hai số cần tìm là a = 5; b = 15.
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Lịch xuất bến của một số xe buýt tại bến xe Mỹ Đình (Hà Nội) được ghi ở bảng bên. Giả sử các xe buýt xuất bến cùng lúc vào 10 giờ 35 phút. Hỏi vào sau bao lâu thì cả 3 xe xuất bến cùng một lúc lần nữa (kể từ lần đầu tiên)?
Câu 3:
Một trường tổ chức cho học sinh đi tham quan bằng ôtô. Nếu xếp 35 hay 40 học sinh lên một ô tô thì đều thấy thiếu mất 5 ghế ngồi. Tính số học sinh đi tam quan biết số lượng học sinh đó trong khoảng từ 800 đến 900 em.
Câu 4:
Một số tự nhiên aa khi chia cho 7 dư 4; chia cho 9 dư 6. Tìm số dư khi chia a cho 63.
Câu 5:
Có bao nhiêu số có ba chữ số là bội chung của a và b, biết rằng
BCNN(a,b) = 300.
Câu 6:
Có bao nhiêu số tự nhiên x khác 0 thỏa mãn x∈BC(12;15;20) và x ≤ 100
Câu 7:
Cho tập hợp X là ước của 35 và lớn hơn 5. Cho tập Y là bội của 8 và nhỏ hơn 50. Gọi M là giao của 2 tập hợp X và Y, tập hợp M có bao nhiêu phần tử?
Câu 8:
Chị Hòa có một số bông sen. Nếu chị bó thành các bó gồm 3 bông, 5 bông hay 7 bông thì đều vừa hết. Hỏi chị Hòa có bao nhiêu bông sen? Biết rằng chị Hòa có khoảng từ 200 đến 300 bông.
Câu 9:
Cho a; b có BCNN(a; b) = 630; ƯCLN(a; b) = 18. Có bao nhiêu cặp số
a; b thỏa mãn?
Câu 10:
Tìm số tự nhiên n lớn nhất có 3 chữ số sao cho n chia 8 dư 7, chia 31 dư 28.
Câu 11:
Tìm một số tự nhiên biết tích của ước số lớn nhất với bội số nhỏ nhất khác 0 của nó là 256.
Câu 13:
Thực hiện các phép tính sau: \[\frac{3}{8} + \frac{5}{{24}}\]. Với kết quả là phân số tối giản