Câu hỏi:

16/07/2024 204

Cho tứ giác ABCD. Gọi M, N, P, Q lần lượt là trung điểm các cạnh AB, BC, CD, DA. Hai đường chéo AC và BD phải thỏa mãn điều kiện gì dể M, N, P, Q là bốn đỉnh của hình vuông.

A. BD = AC

B. BD  AC

C. BD tạo với AC góc 600

D. BD = AC; BD  AC

Đáp án chính xác

Trả lời:

verified Giải bởi Vietjack

Xét tam giác ABD có:

M là trung điểm của AB (gt)

Q là trung điểm của AD (gt)

=> QM là đường trung bình của tam giác ABD. (định lý)

Do đó QM // BD và QM = 12BD (1)

Tương tự ta cũng có NP là đường trung bình của tam giác BCD.

=> NP//BDNP=12BD

Từ (1) và (2) suy ra MNPQ là hình bình hành (dấu hiệu nhận biết)

Tương tự ta cũng có MN là đường trung bình của tam giác BAC nên MN // AC và MN = 12AC

Để hình bình hành MNPQ là hình vuông

=> MNNPMN=NP

+ Để MN ⊥ NP => AC ⊥ BD (vì MN // AC, NP // BD)

+ Để MN = NP => AC = BD (vì MN = 12AC, NP = 12BD)

Vậy điều kiện cần để MNPQ là hình vuông là BD = AC; AC ⊥ BD

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của AB, BC, CA. Gọi M, N, P, Q theo thứ tự là trung điểm của AD, AF, EF, ED. ΔABC có điều kiện gì thì MNPQ là hình chữ nhật?

Xem đáp án » 19/07/2024 196

Câu 2:

Cho tam giác ABC ( A^ < 900). Về phía ngoài của tam giác ABC dựng các hình vuông ABDE, ACFG. Gọi M là trung điểm của đoạn thẳng DF. Chọn câu đúng.

Xem đáp án » 16/07/2024 169

Câu 3:

Cho hình vuông ABCD, E là một điểm trên cạnh CD. Tia phân giác của góc BAE cắt BC tại M. Chọn câu đúng.

Xem đáp án » 16/07/2024 166

Câu hỏi mới nhất

Xem thêm »
Xem thêm »