Câu hỏi:
20/07/2024 301
Cho tam giác ABC có đường cao AH. Trên AH lấy các điểm K, I sao cho AK = KI = IH. Qua I, K lần lượt vẽ các đường thẳng EF // BC, MN // BC (E, M ∈ AB; F, N ∈ AC). Khi đó bằng
Cho tam giác ABC có đường cao AH. Trên AH lấy các điểm K, I sao cho AK = KI = IH. Qua I, K lần lượt vẽ các đường thẳng EF // BC, MN // BC (E, M ∈ AB; F, N ∈ AC). Khi đó bằng
A.
B.
C.
D.
Trả lời:
Đáp án đúng là: D
Vì MN // BC, EF // BC nên MN // BC // EF.
Trong tam giác ABH có EI // BH (I ∈ EF, H ∈ BC) nên theo định lí Thalès ta có:
hay .
Trong tam giác AIF có KN // IF (I ∈ EF, K ∈ MN) nên theo định lí Thalès ta có:
hay .
Ta có .
Đáp án đúng là: D
Vì MN // BC, EF // BC nên MN // BC // EF.
Trong tam giác ABH có EI // BH (I ∈ EF, H ∈ BC) nên theo định lí Thalès ta có:
hay .
Trong tam giác AIF có KN // IF (I ∈ EF, K ∈ MN) nên theo định lí Thalès ta có:
hay .
Ta có .
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có trung tuyến AM và điểm E thuộc đoạn thẳng MC. Qua E kẻ đường thẳng song song với AC, cắt AB tại D và kẻ đường thẳng song song với AB, cắt AC tại F. Khi đó bằng tỉ số
Cho tam giác ABC có trung tuyến AM và điểm E thuộc đoạn thẳng MC. Qua E kẻ đường thẳng song song với AC, cắt AB tại D và kẻ đường thẳng song song với AB, cắt AC tại F. Khi đó bằng tỉ số
Câu 2:
Cho hình thang ABCD (AB // CD). Đường thẳng song song với đáy AB cắt các cạnh bên AD, BC và các đường chéo BD, AC lần lượt tại M, N, P, Q. Khi đó tỉ số bằng:
Cho hình thang ABCD (AB // CD). Đường thẳng song song với đáy AB cắt các cạnh bên AD, BC và các đường chéo BD, AC lần lượt tại M, N, P, Q. Khi đó tỉ số bằng:
Câu 3:
Cho tam giác ABC nhọn, M là trung điểm BC và H là trực tâm của tam giác ABC. Đường thẳng qua H và vuông góc với MH cắt AB và AC theo thứ tự ở I và K. Qua C kẻ đường thẳng song song với IK, cắt AH và AB theo thứ tự tại N và D. Khẳng định nào sau đây là đúng?
Câu 4:
Cho góc xAy khác góc bẹt. Trên tia Ax lấy các điểm B, C. Qua B và C kẻ hai đường thẳng song song với nhau, cắt Ay lần lượt tại D và E. Qua E vẽ đường thẳng song song với CD cắt tia Ax tại F. Khi đó AC2 bằng
Cho góc xAy khác góc bẹt. Trên tia Ax lấy các điểm B, C. Qua B và C kẻ hai đường thẳng song song với nhau, cắt Ay lần lượt tại D và E. Qua E vẽ đường thẳng song song với CD cắt tia Ax tại F. Khi đó AC2 bằng
Câu 5:
Cho tam giác ABC. Trên cạnh BC lấy điểm D sao cho BC = 2BD. Trên đoạn AD lấy điểm O sao cho . Gọi I là giao điểm của CO và AB. Tỉ số là:
Cho tam giác ABC. Trên cạnh BC lấy điểm D sao cho BC = 2BD. Trên đoạn AD lấy điểm O sao cho . Gọi I là giao điểm của CO và AB. Tỉ số là:
Câu 6:
Cho tam giác ABC, từ điểm D trên cạnh AB kẻ đường thẳng song song với BC cắt AC tại E. Trên tia đối của tia CA, lấy điểm F sao cho CF = DB. Gọi M là giao điểm của DF và BC. Khẳng định nào sau đây là đúng?
Cho tam giác ABC, từ điểm D trên cạnh AB kẻ đường thẳng song song với BC cắt AC tại E. Trên tia đối của tia CA, lấy điểm F sao cho CF = DB. Gọi M là giao điểm của DF và BC. Khẳng định nào sau đây là đúng?
Câu 7:
Cho hình bình hành ABCD. Gọi E là một điểm bất kì trên cạnh AB. Qua E kẻ đường thẳng song song với AC cắt BC tại F và kẻ đường thẳng song song với BD cắt AD tại H. Đường thẳng kẻ qua F song song với BD cắt CD tại G. Khi đó AH ⋅ CD bằng
Cho hình bình hành ABCD. Gọi E là một điểm bất kì trên cạnh AB. Qua E kẻ đường thẳng song song với AC cắt BC tại F và kẻ đường thẳng song song với BD cắt AD tại H. Đường thẳng kẻ qua F song song với BD cắt CD tại G. Khi đó AH ⋅ CD bằng
Câu 8:
Cho góc xOy khác góc bẹt. Trên tia Ox lấy hai điểm D, E, trên tia Oy lấy hai điểm F, G sao cho FD // EG. Đường thẳng kẻ qua G song song với EF cắt Ox tại H.
Tích OD ⋅ OH bằng