Câu hỏi:
21/07/2024 176Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với (ABCD). Biết rằng côsin của góc giữa (SCD) và (ABCD) bằng . Tính theo a thể tích V của khối chóp S.ABCD.
A.
B.
C.
D.
Trả lời:
Đáp án B
Phương pháp:
Xác định góc giữa hai mặt phẳng (α;β)
- Tìm giao tuyến Δ của (α;β)
- Xác định 1 mặt phẳng γ ⊥ Δ
- Tìm các giao tuyến a = α∩γ, b = β ∩ γ
- Góc giữa hai mặt phẳng (α;β):(α;β) = (a;b)
Cách giải:
Gọi I, J lần lượt là trung điểm của AB, CD.
Tam giác SAB cân tại S ⇒ SI ⊥ AB
Vì mặt bên SAB nằm trong mặt phẳng vuông góc với (ABCD) nên SI ⊥ (ABCD)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian với hệ tọa độ Oxyz, cho tam giác OAB có Tính độ dài đường cao kẻ từ O của tam giác OAB.
Câu 2:
Cho hình chóp đều S.ABCD có tất cả các cạnh bằng nhau. Khẳng định nào đúng?
Câu 6:
Đường cong ở hình bên là đồ thị của một trong bốn hàm số dưới đây. Hàm số đó là hàm số nào?
Câu 8:
Một hình nón có chiều cao bằng a và thiết diện qua trục của hình nón đó là tam giác vuông. Tính theo a diện tích xung quanh của hình nón đó.
Câu 10:
Cho hình nón đỉnh S, đáy là đường tròn (O; r). Một mặt phẳng đi qua đỉnh của hình nón cắt đường tròn đáy tại hai điểm A và B sao cho . Tính theo r khoảng cách từ O đến (SAB).
Câu 12:
Cho hàm số có đồ thị như hình vẽ bên. Tìm khẳng định đúng trong các khẳng định sau
Câu 15:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, . Cạnh bên và SA vuông góc với (ABCD). Tính theo a thể tích V của khối chóp S.BCD.