Câu hỏi:
22/07/2024 185
Cho (A): 16x4(x – y) – x + y = (2x – 1)(2x + 1)(4x + 1)2(x + y)
và (B): 2x3y – 2xy3 – 4xy2 – 2xy = 2xy(x + y – 1)(x – y + 1).
Cho (A): 16x4(x – y) – x + y = (2x – 1)(2x + 1)(4x + 1)2(x + y)
và (B): 2x3y – 2xy3 – 4xy2 – 2xy = 2xy(x + y – 1)(x – y + 1).
A. (A) đúng, (B) sai
B. (A) sai, (B) đúng
C. (A), (B) đều sai
D. (A), (B) đều đúng
Trả lời:
Đáp án: C
Giải thích:
Lời giải
Ta có
(A): 16x4(x – y) – x + y
= 16x4(x – y) – (x – y)
= (16x4 – 1)(x – y)
= [(2x)4 – 1](x – y)
= [(2x)2 – 1][(2x)2 + 1](x – y)
= (2x – 1)(2x + 1)(4x2 + 1)(x – y)
Nên (A) sai
Và (B): 2x3y – 2xy3 – 4xy2 – 2xy
= 2xy(x2 – y2 – 2y – 1)
= 2xy[x2 – (y2 + 2y + 1)]
= 2xy[x2 – (y + 1)2]
= 2xy(x – y – 1)(x + y + 1).
Nên (B) sai.
Vậy cả (A) và (B) đều sai.
Đáp án: C
Giải thích:
Lời giải
Ta có
(A): 16x4(x – y) – x + y
= 16x4(x – y) – (x – y)
= (16x4 – 1)(x – y)
= [(2x)4 – 1](x – y)
= [(2x)2 – 1][(2x)2 + 1](x – y)
= (2x – 1)(2x + 1)(4x2 + 1)(x – y)
Nên (A) sai
Và (B): 2x3y – 2xy3 – 4xy2 – 2xy
= 2xy(x2 – y2 – 2y – 1)
= 2xy[x2 – (y2 + 2y + 1)]
= 2xy[x2 – (y + 1)2]
= 2xy(x – y – 1)(x + y + 1).
Nên (B) sai.
Vậy cả (A) và (B) đều sai.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Gọi x0 < 0 là giá trị thỏa mãn
x4 + 2x3 – 8x – 16 = 0. Chọn câu đúng
Gọi x0 < 0 là giá trị thỏa mãn
x4 + 2x3 – 8x – 16 = 0. Chọn câu đúng
Câu 2:
Cho biểu thức C = xyz – (xy + yz + zx) + x + y + z – 1.
Phân tích C thành nhân tử và tính giá trị của C khi x = 9; y = 10; z = 101.
Cho biểu thức C = xyz – (xy + yz + zx) + x + y + z – 1.
Phân tích C thành nhân tử và tính giá trị của C khi x = 9; y = 10; z = 101.
Câu 3:
Cho biểu thức D = a(b2 + c2) – b(c2 + a2) + c(a2 + b2) – 2abc.
Phân tích D thành nhân tử và tính giá trị của C khi a = 99; b = -9; c = 1.
Cho biểu thức D = a(b2 + c2) – b(c2 + a2) + c(a2 + b2) – 2abc.
Phân tích D thành nhân tử và tính giá trị của C khi a = 99; b = -9; c = 1.
Câu 4:
Gọi x0 là giá trị thỏa mãn
x4 – 4x3 + 8x2 – 16x + 16 = 0. Chọn câu đúng
Gọi x0 là giá trị thỏa mãn
x4 – 4x3 + 8x2 – 16x + 16 = 0. Chọn câu đúng
Câu 8:
Gọi x1; x2 là hai giá trị thỏa mãn 3x2 + 13x + 10 = 0.
Khi đó 2x1.x2 bằng
Gọi x1; x2 là hai giá trị thỏa mãn 3x2 + 13x + 10 = 0.
Khi đó 2x1.x2 bằng
Câu 9:
Giá trị của biểu thức
B = x3 + x2y – xy2 – y3 tại x = 3,25 ; y = 6,75 là
Giá trị của biểu thức
B = x3 + x2y – xy2 – y3 tại x = 3,25 ; y = 6,75 là
Câu 11:
Cho (x2 + x)2 + 4x2 + 4x – 12 = (x2 + x – 2)(x2 + x + …).
Điền vào dấu … số hạng thích hợp
Cho (x2 + x)2 + 4x2 + 4x – 12 = (x2 + x – 2)(x2 + x + …).
Điền vào dấu … số hạng thích hợp
Câu 15:
Giá trị của biểu thức
A = x2 – 4y2 + 4x + 4
tại x = 62, y = -18 là
Giá trị của biểu thức
A = x2 – 4y2 + 4x + 4
tại x = 62, y = -18 là