Câu hỏi:
21/07/2024 142Biết F(x) là một nguyên hàm của hàm số và . Tính F(3).
Trả lời:
Chọn D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Diện tích S của hình phẳng giới hạn bởi đồ thị hàm số , trục hoành và hai đường thẳng x=-2, x=4 là:
Câu 3:
Hình phẳng (H) giới hạn bởi các đường . Thể tích vật thể tạo thành khi quay (H) quanh trục hoành Ox bằng
Câu 4:
Biết diện tích hình phẳng giới hạn bởi đường cong y=f(x), y=0, x=2a bằng S. Diện tích hình phẳng giới hạn bởi đường cong y=f(2x), trục hoành Ox và hai đường thẳng x=0, x=a bằng:
Câu 6:
Cho (H) là hình phẳng giới hạn bởi đường cong và nửa đường tròn có phương trình (với 0 £ x £ 4) (phần tô đậm trong hình vẽ). Diện tích của (H) bằng
Câu 7:
Cho hàm số f(x) có đạo hàm liên tục trên và thỏa mãn , . Giá trị bằng
Câu 8:
Xét tích phân . Sử dụng phương pháp đổi biến số với , tích phân I được biến đổi thành dạng nào sau đây:
Câu 9:
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;1] thỏa mãn Giá trị bằng:
Câu 10:
Cho hàm số y = f(x) và = g(x) liên tục trên đoạn [a;b]. Diện tích của hình phẳng giới hạn bởi đồ thị các hàm số y= f(x), y = g(x) và hai đường thẳng x = a, x = b (a < b) được tính theo công thức:
Câu 11:
Một chất điểm A xuất phát từ O chuyển động với quy luật , trong đó s(t) là quãng đường chất điểm đi được trong khoảng thời gian t kể từ thời điểm xuất phát. Cùng thời điểm đó, một chất điểm B ở cách O 30m, đang di chuyển cùng hướng A với vận tốc 10m/s thì lại chuyển động với gia tốc . Tại thời điểm hai vật gặp nhau, vận tốc chất điểm A bằng
Câu 13:
Cho (H) là hình phẳng giới hạn bởi các đường . Tính thể tích khối tròn xoay tạo thành khi quay (H) quanh trục Ox.
Câu 14:
Gọi (H) là hình phẳng giới hạn bởi các đồ thì hàm số y = tan x, trục hoành và các đường thẳng x = 0, . Quay (H) xung quanh trục Ox ta được khối tròn xoay có thể tích bằng
Câu 15:
Diện tích hình phẳng giới hạn bởi đồ thị hàm số , trục hoành và đường thẳng x=2 là.