Giải SGK Toán 11 CTST Bài 5. Góc giữa đường thẳng và mặt phẳng. Góc nhị diện
Giải SGK Toán 11 CTST Bài 5. Góc giữa đường thẳng và mặt phẳng. Góc nhị diện
-
96 lượt thi
-
20 câu hỏi
-
0 phút
Danh sách câu hỏi
Câu 1:
15/07/2024Mặt phẳng nghiêng thường được sử dụng trong lao động vì tính tiện dụng của nó. Quan sát hình mặt phẳng nghiêng (P) và mặt đất (Q) trong hình dưới đây và tìm hiểu tại sao:
• được gọi là góc hợp bởi đường thẳng d và (Q).
• được gọi là góc hợp bởi hai mặt phẳng (P) và (Q).
K là hình chiếu vuông góc của C lên (Q) nên được gọi là góc hợp bởi đường thẳng d và (Q).
Ta có:
Nên được gọi là góc hợp bởi hai mặt phẳng (P) và (Q)
Câu 2:
09/07/2024Cho đường thẳng a và mặt phẳng (P).
a) Trong trường hợp a vuông góc với (P), tìm góc giữa a và một đường thẳng b tuỳ ý trong (P).
a) Ta có:
Câu 3:
20/07/2024b) Trong trường hợp a không vuông góc với (P), tìm góc giữa a và đường thẳng a′ là hình chiếu vuông góc của a trên (P).
b) Lấy A a. Gọi
Dựng AH ⊥ a′ (H a′)
Ta có:
Câu 5:
14/07/2024Một tấm ván hình chữ nhật ABCD được dùng làm mặt phẳng nghiêng để kéo một vật lên khỏi hố sâu 2 m. Cho biết AB = 1 m, AD = 3,5 m. Tính góc giữa đường thẳng BD và đáy hố.
• DK ⊥ (ABHK) (BD, (ABHK)) = (BD, BK) =
• DK = CH = 2,
Vậy góc giữa đường thẳng BD và đáy hồ khoảng 33,3°.
Câu 6:
16/07/2024Cho hai mặt phẳng (P) và (Q) cắt nhau theo giao tuyến d. Hãy gọi tên các nửa mặt phẳng có chung bờ d. Các nửa mặt phẳng này chia không gian thành bao nhiêu phần ?
Các nửa mặt phẳng có chung bờ d là: (P1),(P2),(Q1),(Q2).
Các nửa mặt phẳng này chia không gian thành 4 phần.
Câu 7:
17/07/2024Cho góc nhị diện [P1, d, Q1]. Gọi Q là một điểm tuỳ ý trên d, Ox là tia nằm trong (P1) và vuông góc với d, Oy là tia nằm trong (Q1) và vuông góc với d (Hình 6 ).
a) Nêu nhận xét về vị trí tương đối giữa d và mp(Ox, Oy).
a) Ta có:
Câu 8:
23/07/2024b) Nêu nhận xét về số đo của góc khi O thay đổi trên d.
b) Số đo của không đổi khi O thay đổi trên d.
Câu 11:
18/07/2024Cho biết kim tự tháp Memphis tại bang Tennessee (Mỹ) có dạng hình chóp tứ giác đều với chiều cao 98m và cạnh đáy 180m. Tính số đo góc nhị diện tạo bởi mặt bên và mặt đáy.
(Nguồn: https://en.wikipedia.org/wiki/Memphis_Pyramid)
Mô hình hoá kim tự tháp bằng chóp tứ giác đều S.ABCD với O là tâm của đáy.
Vậy AB = 180 m, SO = 98 m.
Gọi M là trung điểm của BC.
• ΔSBC đều nên SM ⊥ BC.
• ΔOBC vuông cân tại O nên OM ⊥ BC.
Khi đó góc phẳng nhị diện [S, BC, O] = (MO, MS) = .
Ta có: O là trung điểm của BD, M là trung điểm của BC.
Suy ra OM là đường trung bình của ΔBCD.
Do đó .
Khi đó: .
Câu 12:
18/07/2024Cho tứ diện đều ABCD. Vẽ hình bình hành BCED.
a) Tìm góc giữa đường thẳng AB và (BCD).
a) Gọi I là trung điểm của CD, O là tâm của ΔBCD.
AO ⊥ (BCD)
(AB, (BCD)) = (AB, OB) =
Vậy góc giữa đường thẳng AB và (BCD) là .
Câu 13:
23/07/2024b) Tìm góc phẳng nhị diện [A, CD, B]; [A, CD, E].
b)
• ΔACD đều nên AI ⊥ CD
• ΔBCD đều nên BI ⊥ CD
Do đó .
Vậy là góc phẳng nhị diện [A, CD, B].
• ΔACD đều nên AI ⊥ CD
• ΔECD đều nên EI ⊥ CD
Do đó .
Vậy là góc phẳng nhị diện [A, CD, E].
Câu 14:
20/07/2024Cho hình chóp tứ giác đều S.ABCD có O là tâm của đáy và có tất cả các cạnh bằng nhau.
a) Tìm góc giữa đường thẳng SA và (ABCD).
a) S.ABCD là hình chóp tứ giác đều có O là tâm của đáy
SO ⊥ (ABCD) (SA, (ABCD)) = (SA,OA) =
Vậy góc giữa đường thẳng SA và (ABCD) là
Câu 15:
23/07/2024b) Tìm góc phẳng nhị diện [A, SO, B], [S, AB, O].
b) Gọi M là trung điểm của AB
SO ⊥ (ABCD) ⇒ SO ⊥ AO, SO ⊥ BO
Vậy là góc phẳng nhị diện [A, SO, B]
• ABCD là hình vuông nên
• ΔSAB đều nên SM ⊥ AB
• ΔOAB vuông cân tại O nên OM ⊥ AB
Vậy là góc phẳng nhị diện [S, AB, O].
Câu 16:
23/07/2024Cho hình chóp cụt lục giác đều ABCDEF.A′B′C′D′E′F′ với O và O′ là tâm hai đáy, cạnh đáy lớn và đáy nhỏ lần lượt là a và .
a) Tìm góc giữa cạnh bên và mặt đáy.
a) Kẻ C′H ⊥ OC (H OC).
OO′C′H là hình chữ nhật nên OO′// C′H.
Mà OO′ ⊥ (ABCDEF) nên C′H ⊥ (ABCDEF).
Do đó (CC′, (ABCDEF)) = (CC′, CH) = .
Câu 17:
06/07/2024b) Tìm góc phẳng nhị diện [O, AB, A′]; [O′, A′B′, A].
b) Gọi M, M′ lần lượt là trung điểm của AB, A′B′.
Khi đó, OM ⊥ AB, O′M′ ⊥ A′B.
ABB′A′ là hình thang cân nên MM′ ⊥ AB, MM′ ⊥ A′B.
Do đó [O, AB, A′] = ; [O′, A′B′, A] = .
Câu 18:
16/07/2024Một con dốc có dạng hình lăng trụ đứng tam giác với kích thước như trong Hình 9.
a) Tính số đo góc giữa đường thẳng CA′ và (CC′B′B).
a) Xét tam giác vuông CBB′có:
Gọi là góc giữa đường thẳng (CA′, (CC′B′B)) =
Khi đó: .
Suy ra .
Câu 19:
10/07/2024b) Tính số đo góc nhị diện cạnh CC′.
b) Ta có: CC′ ⊥ (ABC) CC′ ⊥ AC, CC′ ⊥ BC.
Gọi là góc phẳng nhị diện cạnh [A’, CC’, B’] = .
.
Suy ra .
Câu 20:
23/07/2024Người ta định đào một cái hầm có dạng hình chóp cụt tứ giác đều có hai cạnh đáy là 14 m và 10 m. Mặt bên tạo với đáy nhỏ thành một góc nhị diện có số đo bằng 135°. Tính số mét khối đất cần phải di chuyển ra khỏi hầm.
Vì ABCD là hình vuông nên ta có OF = 7 m
Chiều cao khối chóp S.ABCD là:
Tuơng tự có chiều cao khối chóp S.A′B′C′D′ là: SO′ = 5 m
Thể tích khối chóp S.ABCD:
Thể tích khối chóp S.A’B’C’D’:
Thể tích khối chóp cụt bằng số khối đất phải đào:
.
Vậy có 290,6 m3 khối đất cần phải di chuyển ra khỏi hầm.