Trang chủ Lớp 11 Toán Giải SGK Toán 11 CTST Bài 4. Hai mặt phẳng song song

Giải SGK Toán 11 CTST Bài 4. Hai mặt phẳng song song

Giải SGK Toán 11 CTST Bài 4. Hai mặt phẳng song song

  • 55 lượt thi

  • 27 câu hỏi

  • 0 phút

Danh sách câu hỏi

Câu 2:

09/07/2024

Hộp giấy có các mặt là hình vuông ở Hình 1a được vé lại với các đỉnh là A, B, C, D, A’, B’, C’, D’ như Hình 1b. Gọi tên cặp mặt phẳng:

a) Có ba điểm chung không thẳng hàng.

Hộp giấy có các mặt là hình vuông ở Hình 1a được vé lại với các đỉnh là A, B, C, D, A’, B’, C’, D’ như Hình 1b. Gọi tên cặp mặt phẳng:  a) Có ba điểm chung không thẳng hàng. (ảnh 1)
Xem đáp án

a) Các cặp mặt phẳng có ba điểm chung không thẳng hàng là: (ABCD) và (AA’D’D); (ABCD) và (AA’B’B); (ABCD) và (BB’C’C); (ABCD) và (CC’D’D); (A’B’C’D’) và (AA’D’D); (A’B’C’D’) và (AA’B’B); (A’B’C’D’) và (BB’C’C); (A’B’C’D’) và (CC’D’D).


Câu 3:

06/07/2024

b) Là hai mặt phẳng phân biệt và có một điểm chung.

Xem đáp án

b) Các cặp mặt phẳng là hai mặt phẳng phân biệt và có một điểm chung là: (ABCD) và (A’BC’); (ABCD) và (D’AB’); (ABCD) và (A’CD’); (ABCD) và (A’DC’); (A’B’C’D’) và (AB’C); (A’B’C’D’) và (DA’B); (A’B’C’D’) và (AC’D); (A’B’C’D’) và (AD’C).


Câu 4:

06/07/2024

c) Không có bất kì điểm chung nào.

Xem đáp án

c) Các cặp mặt phẳng không có bất kì điểm chung nào là: (ABCD) và (A’B’C’D’); (AA’D’D) và (BB’C’C); (AA’B’B) và (DD’C’C).


Câu 5:

02/07/2024

Tìm một số mặt phẳng song song có trong hình chụp căn phòng ở Hình 4.

Tìm một số mặt phẳng song song có trong hình chụp căn phòng ở Hình 4.  (ảnh 1)
Xem đáp án
Các mặt phẳng song song có trong căn phòng ở Hình 4 là mặt phẳng các kệ sách.

Câu 6:

20/07/2024

Cho mặt phẳng (P) chứa hai đường thẳng a, b cắt nhau và cùng song song với mặt phẳng (Q). Giả sử (P) và (Q) có điểm chung M thì (P) cắt (Q) theo giao tuyến c (Hình 5).

Cho mặt phẳng (P) chứa hai đường thẳng a, b cắt nhau và cùng song song với mặt phẳng (Q). Giả sử (P) và (Q) có điểm chung M thì (P) cắt (Q) theo giao tuyến c (Hình 5). a) Gải thích tại sao đường thẳng c phải cắt ít nhất một trong hai đường thẳng a, b. Điều này có trái với giả thiết a và b cùng song song với (Q) không?  (ảnh 1)

a) Gải thích tại sao đường thẳng c phải cắt ít nhất một trong hai đường thẳng a, b. Điều này có trái với giả thiết a và b cùng song song với (Q) không?

b) Rút ra kết luận về số điểm chung và vị trí tương đối của (P) và (Q).

Xem đáp án

a) Ta có: a // (Q) , a (P) và (P) ∩ (Q) = {c} nên a // c.

Vì a, b và c đồng phẳng và a // c, a cắt b nên c phải cắt b.

Điều này trái với giả thiết a và b cùng song song với (Q) vì nếu lập luận như trên thay đường thẳng a bằng đường thẳng b thì b phải song song với c.

b) Do đó (P) và (Q) không có điểm chung vì vậy (P) // (Q).


Câu 7:

22/07/2024

Cho tứ diện ABCD có E, F, H lần lượt là trung điểm của AB, AC, AD. Chứng minh (EFH) // (BCD).

Cho tứ diện ABCD có E, F, H lần lượt là trung điểm của AB, AC, AD. Chứng minh (EFH) // (BCD).  (ảnh 1)
Xem đáp án

Trong mặt phẳng (ABC) có EF // BC (tính chất đường trung bình của tam giác ABC) suy ra EF // (BDC).

Trong mặt phẳng (ABD) có HE // BD ( tính chất đường trung bình của tam giác ABD) suy ra HE // (BDC).

Ta có EF và HE cắt nhau tại E và cùng nằm trong mặt phẳng (EFH) nên (EFH) // (BCD).


Câu 8:

19/07/2024

a) Cho điểm A ở ngoài mặt phẳng (Q). Trong (Q) vẽ hai đường thẳng cắt nhau a’ và b’. Làm thế nào để vẽ hai đường thẳng a và b đi qua A và song song với (Q)?

b) Có nhận xét gì về mối liên hệ giữa mp(a, b) và (Q)?

Xem đáp án

a) Để vẽ được đường thẳng a đi qua A và song song với mặt phẳng (Q) ta làm như sau: Từ điểm A vẽ đường thẳng a song song với đường thẳng a’ mà a’ nằm trong (Q) nên thỏa mãn a // (Q).

Tương tự từ điểm A vẽ đường thẳng b song song với đường thẳng b’ mà b’ nằm trong (Q) nên thỏa mãn b // (Q).

b) Ta có a, b mp(a, b), a ∩ b = {A}, a // (Q) và b // (Q) nên mp(a, b) // (Q).


Câu 10:

06/07/2024

Cho hình chóp S.ABCD với đáy ABCD là hình bình hành có O là giao điểm của hai đường chéo, tam giác SBD là tam giác đều. Một mặt phẳng (α) di động song song với mặt phẳng (SBD) và cắt đoạn thằng AC. Chứng minh các giao tuyến của (α) với hình chóp tạo thành một tam giác đều.

Xem đáp án
Cho hình chóp S.ABCD với đáy ABCD là hình bình hành có O là giao điểm của hai đường chéo, tam giác SBD là tam giác đều. Một mặt phẳng (α) di động song song với mặt phẳng (SBD) và cắt đoạn thằng AC. Chứng minh các giao tuyến của (α) với hình chóp tạo thành một tam giác đều. (ảnh 1)

+) Gọi M là giao điểm của mặt phẳng (α) với AC.

Trong mặt phẳng (ABCD), từ điểm M kẻ đường thẳng song song với BD cắt AD và AB tại E và F.

Trong mặt phẳng (SAB), từ điểm F kẻ đường thẳng song song với SB cắt SA tại H.

Trong mặt phẳng (SAD), nối điểm E và H ta được mặt phặng (EFH) chính là mặt phẳng (α) cần dựng.

+) Xét tam giác ABD, có: EF // BD nên  EFBD=AEAD=AFAB (định lí Thales).

Xét tam giác SAB, có: FH // SB nên  FHSB=AFAB=AHSA (định lí Thales).

Xét tam giác SAD, có: EH // SD nên  EHSD=AHSA=AEAD (định lí Thales).

Suy ra EFBD=FHSB=EHSD

Mà tam giác SBD là tam giác đều nên BD = SB = SD.

Do đó EF = FH = EH. Vì vậy giao tuyến của (α) với hình chóp SABCD là hình tam giác đều.


Câu 11:

06/07/2024

Khi dùng dao cắt các lớp bánh (Hình 11), giả sử bề mặt các lớp bánh là các mặt phẳng song song và con dao được xem như mặt phẳng (P), nêu kết luận về các giao tuyến tạo bởi (P) với các bề mặt của các lớp bánh. Giải thích.

Khi dùng dao cắt các lớp bánh (Hình 11), giả sử bề mặt các lớp bánh là các mặt phẳng song song và con dao được xem như mặt phẳng (P), nêu kết luận về các giao tuyến tạo bởi (P) với các bề mặt của các lớp bánh. Giải thích.  (ảnh 1)
Xem đáp án

Các giao tuyến của mặt cắt (P) với các lớp bánh tạo ra các đường thẳng song song.

Bởi gì các lớp bánh là các mặt phẳng song song, mặt phẳng (P) cắt các lớp bánh này tạo ra các giao tuyến song song.


Câu 13:

17/07/2024

b) Trong tam giác AA’C’, có nhận xét gì về mối liên hệ giữa  AB1B1C' và  A'B'B'C'?

Xem đáp án

b) Mặt phẳng (AA’C’) cắt (P) và (Q) lần lượt tại AA’ và B’B1 nên B’B1 // AA’.

Áp dụng định lí Thales trong tam giác AA’C’, ta có:  AB1B1C=A'B'A'C' (2).


Câu 14:

29/06/2024

c) Từ đó, nêu nhận xét về mối liên hệ giữa các tỉ số  ABA'B',BCB'C',ACA'C'.

Xem đáp án

c) Từ (1) và (2), ta có:  ABBC=A'B'B'C'ABA'B'=BCB'C'

Áp dụng tính chất dãy tỉ số bằng nhau ta được:  ABA'B'=BCB'C'=AB+BCA'B'+B'C'=ACA'C'.


Câu 15:

06/07/2024

Cho hình chóp S.ABC có SA = 9, SB = 12, SC = 15. Trên cạnh SA lấy điểm M, N sao cho SM = 4, MN = 3, NA = 2. Vẽ hai mặt phẳng song song với mặt phẳng (ABC), lần lượt đi qua M, N, cắt SB theo thứ tự tại M’, N’ và cắt SC theo thứ tự tại M”, N”. Tính độ dài các đoạn thẳng SM’, M’N’, M”N”, N”C.

Xem đáp án

+) Ta có: mặt phẳng (MM’M”) // (NN’N”) // (ABC)

Áp dụng định lí Thales trong không gian, ta được:

 SMSA=SM'SB=SM"SC49=SM'12=SM"15

SM’ =  163 và SM” =  203.

+) Áp dụng định lí Thales trong không gian, ta được:

 SMMN=SM'M'N'=SM"M"N"43=163M'N'=203M"N"

M’N’ = 4 và M”N” = 5.

+) Ta có: N”C = SC – SM” – M”N” = 15 –  203 – 5 =  103.


Câu 16:

17/07/2024

Hình dạng của các đồ vật như hộp phấn, lồng đèn, hộp quà, lăng kính có đặc điểm gì giống nhau?

Hình dạng của các đồ vật như hộp phấn, lồng đèn, hộp quà, lăng kính có đặc điểm gì giống nhau?  (ảnh 1)
Xem đáp án

Hình dạng của các đồ vật trên đều có đặc điểm là:

+) Có hai đáy là hai mặt song song với nhau.

+) Các mặt bên là các hình chữ nhật.

+) Các cạnh bên có độ dài bằng nhau.


Câu 17:

15/07/2024

Cho hình hộp ABCD.A’B’C’D’và một mặt phẳng (α) cắt các mặt của hình hộp theo các giao tuyến MN, NP, PQ, QR, RS, SM như Hình 18. Chứng minh các cặp cạnh đối của lục giác MNPQRS song song với nhau.

Cho hình hộp ABCD.A’B’C’D’và một mặt phẳng (α) cắt các mặt của hình hộp theo các giao tuyến MN, NP, PQ, QR, RS, SM như Hình 18. Chứng minh các cặp cạnh đối của lục giác MNPQRS song song với nhau.  (ảnh 1)
Xem đáp án

+) Ta có: (ABCD) // (A’B’C’D’)

(α) ∩ (ABCD) = MN

(α) ∩ (A’B’C’D’) = QR

MN // QR.

+) Ta có: (AA’D’D) // (BB’C’C)

(α) ∩ (AA’D’D) = MS

(α) ∩ (BB’C’C) = PQ

MS // PQ.

+) Ta có: (AA’B’B) // (DD’C’C)

(α) ∩ (AA’B’B) = NP

(α) ∩ (DD’C’C) = SR

NP // SR.


Câu 18:

19/07/2024

Tìm hình lăng trụ có thể lấy một mặt bất kì làm mặt đáy.

Xem đáp án

Hình lăng trụ bất kì có thể lấy một mặt bất kì làm mặt đáy là hình lập phương.


Câu 19:

14/07/2024

Trong mặt phẳng (P) cho hình bình hành ABCD. Ta dựng các nửa đường thẳng song song với nhau và nằm về một phía đối với (P) lần lượT đi qua các điểm A, B, C, D. Một mặt phẳng (Q) cắt bốn nửa đường thẳng nói trên tại A’, B’, C’, D’. Chứng minh rằng:

AA’ + CC’ = BB’ + DD’.

Xem đáp án

+) Ta có:

(AA’B’B) // (DD’C’C)

(Q) ∩ (AA’B’B) = A’B’

(Q) ∩ (DD’C’C) = D’C’

A’B’ // D’C’ (1).

+) Tương tự ta có:

(AA’D’D) // (BB’C’C)

(Q) ∩ (AA’D’D) = A’D’

(Q) ∩ (BB’C’C) = B’C’

A’D’ // B’C’ (2).

Từ (1) và (2) suy ra tứ giác A’B’C’D’ là hình bình hành.

Gọi O và O’ lần lượt là tâm của các hình bình hành ABCD và A’B’C’D’ nên O là trung điểm của AC và BD và O’ là trung điểm của A’C’ và B’D’.

+) Xét tứ giác ACC’A’, có: CC’ // AA’ nên ACC’A’ là hình thang, O là trung điểm của AC và O’ là trung điểm của A’C’ nên OO’ là đường trung bình của hình thang suy ra:  OO'=12AA'+CC' (1).

+) Xét tứ giác BB’D’D, có: BB’ // DD’ nên BB’D’D là hình thang, O là trung điểm của BD và O’ là trung điểm của B’D’ nên OO’ là đường trung bình của hình thang suy ra:  OO'=12BB'+DD' (2).

Từ (1) và (2) suy ra AA’ + CC’ = BB’ + DD’.

Trong mặt phẳng (P) cho hình bình hành ABCD. Ta dựng các nửa đường thẳng song song với nhau và nằm về một phía đối với (P) lần lượT đi qua các điểm A, B, C, D. Một mặt phẳng (Q) cắt bốn nửa đường thẳng nói trên tại A’, B’, C’, D’. Chứng minh rằng: AA’ + CC’ = BB’ + DD’.  (ảnh 1)

Câu 20:

22/07/2024

Cho hình chóp S.ABCD, đáy ABCD là hình bình hành có O là giao điểm của hai đường chéo. Gọi M, N lần lượt là trung điểm của SA, SD.

a) Chứng minh rằng (OMN) // (SBC).

Xem đáp án

a)

Cho hình chóp S.ABCD, đáy ABCD là hình bình hành có O là giao điểm của hai đường chéo. Gọi M, N lần lượt là trung điểm của SA, SD. a) Chứng minh rằng (OMN) // (SBC). (ảnh 1)

+) Trong tam giác SAD có: MN // AD (đường trung bình) mà AD // BC nên MN // BC.

Mặt khác BC (SBC)

Suy ra MN // (SBC).

+) Trong tam giác SAC, có: OM // SC (đường trung bình) mà SC (SBC) nên OM // (SBC).

+) Ta lại có MN, OM (OMN) và OM cắt MN tại M

Vì vậy (OMN) // (SBC).


Câu 21:

17/07/2024

b) Gọi E là trung điểm của AB và F là một điểm thuộc ON. Chứng minh EF song song với (SBC).

Xem đáp án

b) +) Trong tam giác SAB, có: EM // SB (đường trung bình) mà SB (SBC) nên EM // (SBC).

Từ điểm M ta xác định được duy nhất một mặt phẳng song song với (SBC) nên EM (OMN).

Do đó EF (OMN) mà (OMN) // (SBC) nên EF // (SBC).


Câu 22:

23/07/2024

Cho hai hình vuông ABCD và ABEF ở trong hai mặt phẳng khác nhau. Trên các đường chéo AC và BF lần lượt lấy các điểm M, N sao cho AM = BN. Các đường thẳng song song với AB vẽ từ M, N lần lượt cắt AD, AF tại M’, N’.

a) Chứng minh (CBE) // (ADF).

Xem đáp án
Cho hai hình vuông ABCD và ABEF ở trong hai mặt phẳng khác nhau. Trên các đường chéo AC và BF lần lượt lấy các điểm M, N sao cho AM = BN. Các đường thẳng song song với AB vẽ từ M, N lần lượt cắt AD, AF tại M’, N’. a) Chứng minh (CBE) // (ADF).Cho hai hình vuông ABCD và ABEF ở trong hai mặt phẳng khác nhau. Trên các đường chéo AC và BF lần lượt lấy các điểm M, N sao cho AM = BN. Các đường thẳng song song với AB vẽ từ M, N lần lượt cắt AD, AF tại M’, N’. a) Chứng minh (CBE) // (ADF). (ảnh 1)

a) Ta có: BE // AF (ABEF là hình vuông) mà AF (ADF) nên BE // (ADF).

BC // AD (ABCD là hình vuông) mà AD (ADF) nên BC // (ADF)

Mặt khác BE, BC cắt nhau tại B và nằm trong mặt phẳng (CBE)

Vì vậy (CBE) // (ADF).


Câu 23:

22/07/2024

b) Chứng minh (DEF) // (MNN’M’).

Xem đáp án

b) Trong mặt phẳng (ABF) có: NN’ // AD nên  AN'AF=BNBF(định lí Thales).

Trong mặt phẳng (ADC) có: MM’ // DC nên  AM'AD=AMAC (định lí Thales).

Ta có hình vuông ABCD và hình vuông ABEF là hai hình vuông bằng nhau vì cùng chung cạnh AB nên AC = BF mà AM = BN nên  BNBF=AMAB suy ra  AN'AF=AM'AC.

Trong tam giác ADF, có  AN'AF=AM'AC nên M’N’ // DF (theo định lí Thales đảo).

Mà DF (DEF) nên M’N’ // (DEF).

Ta có: MM’ // AD // DC (gt) mà DC (DEF) nên MM’ // (DEF)

Ta lại có M’N’ và MM’ là hai đường thẳng cắt nhau tại M’ và cùng nằm trong (MNN’M’).

Vì vậy (DEF) // (MNN’M’).


Câu 24:

17/07/2024

Cho hình hộp ABCD.A’B’C’D’. Gọi G1 và G2 lần lượt là trọng tâm của hai tam giác BDA’ và B’D’C. Chứng minh G1 và G2 chia đoạn AC’ thành ba phần bằng nhau.

Xem đáp án
Cho hình hộp ABCD.A’B’C’D’. Gọi G1 và G2 lần lượt là trọng tâm của hai tam giác BDA’ và B’D’C. Chứng minh G1 và G2 chia đoạn AC’ thành ba phần bằng nhau.  (ảnh 1)

Gọi O là giao điểm của hai đường chéo AC và BD, O’ là giao điểm của A’C’ và B’D’, I là giao điểm của AC’ và A’C.

Tứ giác AA’C’C là hình bình hành có I là trung điểm của A’C và I cũng là trung điểm của AC’.

+) Trong tam giác BA’D có: G1 là trọng tâm tam giác và A’O là đường trung tuyến nên G1 A’O thỏa mãn A’G123A’O.

+) Trong tam giác B’CD’ có: G2 là trọng tâm tam giác và CO’ là đường trung tuyến nên G2 CO’ thỏa mãn CG223CO’.

+) Trong tam giác A’AC có  G1 A’O thỏa mãn A’G123A’O nên G1 là trọng tâm tam giác AA’C nên AG123AI mà I là trung điểm của AC thì AI =  12AC, suy ra AG113AC.

+) Tương tự trong tam giác A’CC’, có: AG213AC.

Vì vậy G1G213AC.


Câu 25:

22/07/2024

Để làm một khung lồng đèn kéo quân hình lăng trụ lục giác ABCDEF.A’B’C’D’E’F’, Bình gắn hai thanh tre A1D1, F1C1 song song với mặt phẳng đáy và cắt nhau tại O1 (Hình 19).

a) Xác định giao tuyến của mp(A1D1, F1C1) với các mặt bên của lăng trụ.

Để làm một khung lồng đèn kéo quân hình lăng trụ lục giác ABCDEF.A’B’C’D’E’F’, Bình gắn hai thanh tre A1D1, F1C1 song song với mặt phẳng đáy và cắt nhau tại O1 (Hình 19).  a) Xác định giao tuyến của mp(A1D1, F1C1) với các mặt bên của lăng trụ.  (ảnh 1)
Xem đáp án
Để làm một khung lồng đèn kéo quân hình lăng trụ lục giác ABCDEF.A’B’C’D’E’F’, Bình gắn hai thanh tre A1D1, F1C1 song song với mặt phẳng đáy và cắt nhau tại O1 (Hình 19).  a) Xác định giao tuyến của mp(A1D1, F1C1) với các mặt bên của lăng trụ.  (ảnh 2)

a) Ta có: A1D1 // (ABCDEF) và F1C1 // (ABCDEF)

Mà A1D1 cắt F1C1 tại O nên (A1F1D1C1) // (ABCDEF)

+) Ta có: giao tuyến của (ABCDEF) với (AA’B’B) là AB mà (A1F1D1C1) // (ABCDEF) nên giao tuyến của (A1F1D1C1) với (AA’B’B) là đường thẳng đi qua A1 song song với AB cắt BB’ tại B1.

Vì vậy giao tuyến của (A1F1D1C1) với (AA’B’B) là A1B1.

+) Giao tuyến của (A1F1D1C1) với (BB’C’C) là B1C1.

+) Giao tuyến của (A1F1D1C1) với (CC’D’D) là C1D1.

+) Ta có: giao tuyến của (ABCDEF) với (DD’E’E) là DE

Mà (A1F1D1C1) // (ABCDEF) nên giao tuyến của (A1F1D1C1) với (DD’E’E) là đường thẳng đi qua D1 song song với DE cắt EE’ tại E1.

Vì vậy giao tuyến của (A1F1D1C1) với (DD’E’E) là D1E1.

+) Giao tuyến của (A1F1D1C1) với (EE’F’F) là E1F1.

+) Giao tuyến của (A1F1D1C1) với (AA’F’F) là A1F1.


Câu 26:

06/07/2024

b) Cho biết A’A1 = 6AA1 và AA’ = 70 cm. Tính CC1 và C1C’.

Xem đáp án

b) Ta có:

(A’B’C’D’E’F’) // (ABCDEF) và (ABCDEF) // (A1B1C1D1E1F1) nên (A’B’C’D’E’F’) // (A1B1C1D1E1F1).

(A’B’C’D’E’F’) ∩ (AA’C’C) = A’C’

(A1B1C1D1E1F1) ∩ (AA’C’C) = A1C1

(ABCDEF) ∩ (AA’C’C) = AC

Suy ra A’C’ // A1C1 // AC và A’AA'A1AA1=C'C1CC1=6C'C1=6CC1

Ta lại có: AA’ = CC’ = 70 cm

Suy ra C’C1 + CC1 = 70

Vì vậy CC1 = 10 cm và C’C1 = 60 cm.


Câu 27:

20/07/2024

Chỉ ra các mặt phẳng song song trong mỗi hình sau. Tìm thêm một số ví dụ khác về mặt phẳng song song trong thực tế.

Chỉ ra các mặt phẳng song song trong mỗi hình sau. Tìm thêm một số ví dụ khác về mặt phẳng song song trong thực tế.  (ảnh 1)
Xem đáp án

Các mặt phẳng song song trong Hình 20a là các bề mặt của tấm pin năng lượng mặt trời.

Các mặt phẳng song song trong Hình 20b là các mặt trước và mặt sau của ngôi nhà.


Bắt đầu thi ngay