Giải SGK Toán 11 Cánh diều Bài 1. Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu ghép nhóm
Giải SGK Toán 11 Cánh diều Bài 1. Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu ghép nhóm
-
123 lượt thi
-
25 câu hỏi
-
0 phút
Danh sách câu hỏi
Câu 1:
18/07/2024Một cuộc khảo sát đã tiến hành xác định tuổi (theo năm) của 120 chiếc ô tô. Kết quả điều tra được cho trong Bảng 1.
Tìm các số đặc trưng đo xu thế trung tâm (số trung bình cộng, trung vị, tứ phân vị, mốt) cho mẫu số liệu ghép nhóm đó như thế nào cho thuận lợi?
Sau bài học này, chúng ta sẽ giải quyết được câu hỏi trên như sau:
Bảng tần số ghép nhóm bao gồm giá trị đại diện và tần số tích lũy như sau:
Nhóm |
Giá trị đại diện |
Tần số |
Tần số tích lũy |
[0; 4) |
2 |
13 |
13 |
[4; 8) |
6 |
29 |
42 |
[8; 12) |
10 |
48 |
90 |
[12; 16) |
14 |
22 |
112 |
[16; 20) |
18 |
8 |
120 |
|
|
n = 120 |
|
⦁ Số trung bình cộng của mẫu số liệu ghép nhóm đã cho là:
⦁ Số phần tử của mẫu là n = 120. Ta có
Mà 42 < 60 < 90 nên nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bẳng 60.
Xét nhóm 3 là nhóm [8; 12) có r = 8, d = 4, n3 = 48 và nhóm 2 là nhóm [4; 8) có cf2 = 42.
Áp dụng công thức, ta có trung vị của mẫu số liệu đã cho là:
Do đó tứ phân vị thứ hai là Q2 = Me = 9,5.
⦁ Ta có: mà 13 < 30 < 42. Suy ra nhóm 2 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng 30.
Xét nhóm 2 là nhóm [4; 8) có s = 4; h = 4; n2 = 29 và nhóm 1 là nhóm [0; 4) có cf1 = 13.
Áp dụng công thức, ta có tứ phân vị thứ nhất là:
(năm).
⦁ Ta có: mà 42 < 60 < 90. Suy ra nhóm 3 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng 60.
Xét nhóm 3 là nhóm [8; 12) có r = 8; d = 4; n3 = 48 và nhóm 2 là nhóm [4; 8) có cf2 = 42.
Áp dụng công thức, ta có tứ phân vị thứ hai là:
(năm).
⦁ Ta có: mà cf3 = 90. Suy ra nhóm 3 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng 90.
Xét nhóm 3 là nhóm [8; 12) có r = 8; d = 4; n3 = 48 và nhóm 2 là nhóm [4; 8) có cf2 = 42.
Áp dụng công thức, ta có tứ phân vị thứ ba là:
(năm).
Vậy tứ phân vị của mẫu số liệu trên là:
(năm); (năm) và (năm).
Câu 2:
12/07/2024Trong Bảng 1 ở phần mở đầu ta thấy:
⦁ Có 13 ô tô có độ tuổi dưới 4;
⦁ Có 29 ô tô có độ tuổi từ 4 đến dưới 8.
Hãy xác định số ô tô có độ tuổi:
a) Từ 8 đến dưới 12;
b) Từ 12 đến dưới 16;
c) Từ 16 đến dưới 20.
a) Có 48 ô tô có độ tuổi từ 8 đến dưới 12;
b) Có 22 ô tô có độ tuổi từ 12 đến dưới 16;
c) Có 8 ô tô có độ tuổi từ 16 đến dưới 20.
Câu 3:
23/07/2024Mẫu số liệu ghép nhóm ở Bảng 1 có bao nhiêu số liệu? Bao nhiêu nhóm? Tìm tần số của mỗi nhóm.
Từ Bảng 1, ta thấy:
⦁ Mẫu số liệu đó gồm 120 số liệu và 5 nhóm.
⦁ Tần số của nhóm 1, 2, 3, 4, 5 lần lượt là: 13; 29; 48; 22; 8.
Câu 4:
22/07/2024Một trường trung học phổ thông chọn 36 học sinh nam của khối 11, đo chiều cao của các bạn học sinh đó và thu được mẫu số liệu sau (đơn vị: centimét):
Từ mẫu số liệu không ghép nhóm trên, hãy ghép các số liệu thành năm nhóm theo các nửa khoảng có độ dài bằng nhau.
Từ mẫu số liệu đã cho ta thấy giá trị nhỏ nhất là 160, giá trị lớn nhất là 175. Do đó ta chia mẫu số liệu đã cho thành 5 nhóm như sau:
[160; 163); [163; 166); [166; 169); [169; 172); [172; 175).
Câu 5:
21/07/2024Một thư viện thống kê người đến đọc sách vào buổi tối trong 30 ngày của tháng vừa qua như sau:
Lập bảng tần số ghép nhóm có tám nhóm ứng với tám nửa khoảng sau:
[25; 34); [34; 43); [43; 52); [52; 61); [61; 70); [70; 79); [79; 88); [88; 97).
Bảng tần số ghép nhóm như sau:
Nhóm |
Tần số |
[25; 34) |
3 |
[34; 43) |
3 |
[43; 52) |
6 |
[52; 61) |
5 |
[61; 70) |
4 |
[70; 79) |
3 |
[79; 88) |
4 |
[88; 97) |
2 |
|
n = 30 |
Câu 6:
22/07/2024Trong Bảng 4, có bao nhiêu số liệu với giá trị không vượt quá giá trị đầu mút phải:
a) 163 của nhóm 1? b) 166 của nhóm 2?
c) 169 của nhóm 3? d) 172 của nhóm 4?
e) 175 của nhóm 5?
a) Có 6 giá trị không vượt quá giá trị đầu mút phải 163 của nhóm 1.
b) Có 6 + 12 = 18 giá trị không vượt quá giá trị đầu mút phải 166 của nhóm 2.
c) Có 18 + 10 = 28 giá trị không vượt quá giá trị đầu mút phải 169 của nhóm 3.
d) Có 28 + 5 = 33 giá trị không vượt quá giá trị đầu mút phải 172 của nhóm 4.
e) Có 33 + 3 = 36 giá trị không vượt quá giá trị đầu mút phải 175 của nhóm 5.
Câu 7:
11/07/2024Trong bài toán ở Luyện tập 2, lập bảng tần số ghép nhóm bao gồm cả tần số tích lũy có tám nhóm ứng với tám nửa khoảng:
[25; 34); [34; 43); [43; 52); [52; 61); [61; 70); [70; 79); [79; 88); [88; 97).
Bảng tần số ghép nhóm bao gồm cả tần số tích lũy như sau:
Nhóm |
Tần số |
Tấn số tích lũy |
[25; 34) |
3 |
3 |
[34; 43) |
3 |
6 |
[43; 52) |
6 |
12 |
[52; 61) |
5 |
17 |
[61; 70) |
4 |
21 |
[70; 79) |
3 |
24 |
[79; 88) |
4 |
28 |
[88; 97) |
2 |
30 |
|
n = 30 |
|
Câu 8:
22/07/2024Xét mẫu số liệu trong Ví dụ 2 được cho dưới dạng bảng tần số ghép nhóm (Bảng 4).
Nhóm |
Tần số |
[160; 163) [163; 166) [166; 169) [169; 172) [172; 175) |
6 12 10 3 |
|
n = 36 |
Bảng 4
a) Tìm trung điểm x1 của nửa khoảng (tính bằng trung bình cộng của hai đầu mút) ứng với nhóm 1. Ta gọi trung điểm x1 là giá trị đại diện của nhóm 1.
b) Bằng cách tương tự, hãy tìm giá trị đại diện của bốn nhóm còn lại. Từ đó, hãy hoàn thiện các số liệu trong Bảng 7.
Nhóm |
Giá trị đại diện |
Tần số |
[160; 163) [163; 166) [166; 169) [169; 172) [172; 175) |
x1 = ? x2 = ? x3 = ? x4 = ? x5 = ? |
n1 = ? n2 = ? n3 = ? n4 = ? n5 = ? |
|
|
n = ? |
Bảng 7
c) Tính giá trị cho bởi công thức sau:
Giá trị gọi là số trung bình cộng của mẫu số liệu đã cho.
a) Trung điểm x1 (giá trị đại diện) của nửa khoảng ứng với nhóm 1 là:
b) Giá trị đại diện của nửa khoảng ứng với nhóm 2 là:
Giá trị đại diện của nửa khoảng ứng với nhóm 3 là:
Giá trị đại diện của nửa khoảng ứng với nhóm 4 là:
Giá trị đại diện của nửa khoảng ứng với nhóm 5 là:
Ta hoàn thiện được Bảng 7 như sau:
Nhóm |
Giá trị đại diện |
Tần số |
[160; 163) [163; 166) [166; 169) [169; 172) [172; 175) |
x1 = 161,5 x2 = 164,5 x3 = 167,5 x4 = 170,5 x5 = 173,5 |
n1 = 6 n2 = 12 n3 = 10 n4 = 5 n5 = 3 |
|
|
n = 36 |
c) Số trung bình cộng của mẫu số liệu đã cho là:
Câu 9:
06/07/2024Ta có bảng giá trị đại diện và tần số ghép nhóm như sau:
Nhóm |
Giá trị đại diện |
Tần số |
[25; 34) |
29,5 |
3 |
[34; 43) |
38,5 |
3 |
[43; 52) |
47,5 |
6 |
[52; 61) |
56,5 |
5 |
[61; 70) |
65,5 |
4 |
[70; 79) |
74,5 |
3 |
[79; 88) |
83,5 |
4 |
[88; 97) |
92,5 |
2 |
|
|
n = 30 |
Số trung bình cộng của mẫu số liệu đã cho là:
Câu 10:
22/07/2024Trong phòng thí nghiệm, người ta chia 99 mẫu vật thành năm nhóm căn cứ trên khối lượng của chúng (đơn vị: gam) và lập bảng tần số ghép nhóm bao gồm cả tần số tích luỹ như Bảng 10.
Nhóm |
Tần số |
Tần số tích lũy |
[27,5; 32,5) [32,5; 37,5) [37,5; 42,5) [42,5; 47,5) [47,5; 52,5) |
16 24 20 30 9 |
16 40 60 90 99 |
|
n = 99 |
|
Bảng 10
a) Nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng có đúng không?
b) Tìm đầu mút trái r, độ dài d, tần số n3 của nhóm 3; tần số tích lũy cf2 của nhóm 2.
c) Tính giá trị Me theo công thức sau:
Giá trị Me được gọi là trung vị của mẫu số liệu ghép nhóm đã cho.
a) Nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng do cf3 = 60 > 49,5.
b) Đầu mút trái r của nhóm 3 là r = 37,5.
Độ dài d của nhóm 3 là d = 42,5 – 37,5 = 5.
Tần số n3 của nhóm 3 là n3 = 20.
Tần số tích lũy cf2 của nhóm 2 là cf2 = 40.
c) Ta có:
Câu 11:
07/07/2024Xác định trung vị của mẫu số liệu ghép nhóm ở Bảng 1.
Nhóm |
Tần số |
[0; 4) |
13 |
[4; 8) |
29 |
[8; 12) |
48 |
[12; 16) |
22 |
[16; 20) |
8 |
|
n = 120 |
Bảng 1
Ta có bảng tần số tích lũy như sau:
Nhóm |
Tần số |
Tần số tích lũy |
[0; 4) |
13 |
13 |
[4; 8) |
29 |
42 |
[8; 12) |
48 |
90 |
[12; 16) |
22 |
112 |
[16; 20) |
8 |
120 |
|
n = 120 |
|
Số phần tử của mẫu là n = 120. Ta có
Mà 42 < 60 < 90 nên nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bẳng 60.
Xét nhóm 3 là nhóm [8; 12) có r = 8, d = 4, n3 = 48 và nhóm 2 là nhóm [4; 8) có cf2 = 42.
Áp dụng công thức, ta có trung vị của mẫu số liệu đã cho là:
Câu 12:
22/07/2024Giáo viên chủ nhiệm chia thời gian sử dụng Internet trong một ngày của 40 học sinh thành năm nhóm (đơn vị: phút) và lập bảng tần số ghép nhóm bao gồm cả tần số tích lũy như Bảng 12.
Nhóm |
Tần số |
Tần số tích lũy |
[0; 60) [60; 120) [120; 180) [180; 240) [240; 300) |
6 13 13 6 2 |
6 19 32 38 40 |
|
n = 40 |
|
Bảng 12
a) Tìm trung vị Me của mẫu số liệu ghép nhóm đó. Trung vị Me còn gọi là tứ phân vị thứ hai Q2 của mẫu số liệu trên.
a) Số phần tử của mẫu là n = 40. Ta có
Mà 19 < 20 < 32 nên nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bẳng 20.
Xét nhóm 3 là nhóm [120; 180) có r = 120, d = 60, n3 = 13 và nhóm 2 là nhóm [60; 120) có cf2 = 19.
Áp dụng công thức, ta có trung vị của mẫu số liệu đã cho là:
(phút).
Câu 13:
20/07/2024b) • Nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng có đúng không?
⦁ Tìm đầu mút trái s, độ dài h, tần số n2 của nhóm 2; tần số tích luỹ cf1 của nhóm 1. Sau đó, hãy tính giá trị Q1 theo công thức sau:
Giá trị nói trên được gọi là tứ phân vị thứ nhất Q1 của mẫu số liệu đã cho.
b) • Nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng do cf2 = 19 > 10.
⦁ Đầu mút trái s của nhóm 2 là s = 60;
Độ dài h của nhóm 2 là h = 60;
Tần số n2 của nhóm 2 là n2 = 13;
Tần số tích luỹ cf1 của nhóm 1 là cf1 = 6.
Giá trị Q1 là: (phút).
Câu 14:
22/07/2024c) • Nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng có đúng không?
• Tìm đầu mút trái t, độ dài l, tần số n3 của nhóm 3; tần số tích luỹ cf2 của nhóm 2. Sau đó, hãy tính giá trị Q3 theo công thức sau:
Giá trị nói trên được gọi là tứ phân vị thứ ba Q3 của mẫu số liệu đã cho.
c) • Nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng do cf3 = 32 > 30.
• Đầu mút trái t của nhóm 3 là t = 120;
Độ dài l của nhóm 3 là l = 60;
Tần số n3 của nhóm 3 là n3 = 13;
Tần số tích luỹ cf2 của nhóm 2 là cf2 = 19.
Giá trị Q3 là: (phút).
Câu 15:
22/07/2024Tìm tứ phân vị của mẫu số liệu trong Bảng 1 (làm tròn các kết quả đến hàng đơn vị).
Nhóm |
Tần số |
[0; 4) |
13 |
[4; 8) |
29 |
[8; 12) |
48 |
[12; 16) |
22 |
[16; 20) |
8 |
|
n = 120 |
Bảng 1
Ta có bảng tần số tích lũy như sau:
Nhóm |
Tần số |
Tần số tích lũy |
[0; 4) |
13 |
13 |
[4; 8) |
29 |
42 |
[8; 12) |
48 |
90 |
[12; 16) |
22 |
112 |
[16; 20) |
8 |
120 |
|
n = 120 |
|
Số phần tử của mẫu là n = 120.
⦁ Ta có: mà 13 < 30 < 42. Suy ra nhóm 2 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng 30.
Xét nhóm 2 là nhóm [4; 8) có s = 4; h = 4; n2 = 29 và nhóm 1 là nhóm [0; 4) có cf1 = 13.
Áp dụng công thức, ta có tứ phân vị thứ nhất là:
(năm).
⦁ Ta có: mà 42 < 60 < 90. Suy ra nhóm 3 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng 60.
Xét nhóm 3 là nhóm [8; 12) có r = 8; d = 4; n3 = 48 và nhóm 2 là nhóm [4; 8) có cf2 = 42.
Áp dụng công thức, ta có tứ phân vị thứ hai là:
(năm).
⦁ Ta có: mà cf3 = 90. Suy ra nhóm 3 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng 90.
Xét nhóm 3 là nhóm [8; 12) có r = 8; d = 4; n3 = 48 và nhóm 2 là nhóm [4; 8) có cf2 = 42.
Áp dụng công thức, ta có tứ phân vị thứ ba là:
(năm).
Vậy tứ phân vị của mẫu số liệu trên là:
(năm); (năm) và (năm).
Câu 16:
21/07/2024Quan sát bảng tần số ghép nhóm bao gồm cả tần số tích luỹ ở Ví dụ 6 rồi cho biết:
Nhóm |
Tần số |
Tần số tích lũy |
[30; 40) [40; 50) [50; 60) [60; 70) [70; 80) [80; 90) |
2 10 16 8 2 2 |
1 12 28 36 38 40 |
|
n = 40 |
|
Bảng 13
a) Nhóm nào có tần số lớn nhất;
b) Đầu mút trái và độ dài của nhóm có tần số lớn nhất bằng bao nhiêu.
Từ bảng tần số ghép nhóm và tần số tích lũy ta có:
a) Nhóm 3 là nhóm [50; 60) có tần số lớn nhất.
b) Nhóm [50; 60) có đầu mút trái là 50, độ dài là 10.
Câu 17:
22/07/2024Tìm mốt của mẫu số liệu trong Ví dụ 6 (làm tròn các kết quả đến hàng phần mười).
Nhóm |
Tần số |
Tần số tích lũy |
[30; 40) [40; 50) [50; 60) [60; 70) [70; 80) [80; 90) |
2 10 16 8 2 2 |
1 12 28 36 38 40 |
|
n = 40 |
|
Bảng 13
Ta thấy nhóm 3 là nhóm [50; 60) có tần số lớn nhất với u = 50, g = 10 và n3 = 16.
Nhóm 2 là nhóm [40; 50) có n2 = 10 và nhóm 4 là nhóm [60; 70) có n4 = 8.
Áp dụng công thức, ta có mốt của mẫu số liệu là:
Câu 18:
22/07/2024Mẫu số liệu dưới đây ghi lại tốc độ của 40 ô tô khi đi qua một trạm đo tốc độ (đơn vị: km/h).
a) Lập bảng tần số ghép nhóm cho mẫu số liệu trên có sáu nhóm ứng với sáu nửa khoảng:
[40; 45), [45; 50), [50; 55), [55; 60), [60; 65), [65; 70).
a) Bảng tần số ghép nhóm cho mẫu số liệu trên như sau:
Nhóm |
Tần số |
[40; 45) |
4 |
[45; 50) |
11 |
[50; 55) |
7 |
[55; 60) |
8 |
[60; 65) |
8 |
[65; 70) |
2 |
|
n = 40 |
Câu 19:
22/07/2024b) Bảng tần số ghép nhóm bao gồm giá trị đại diện và tần số tích lũy như sau:
Nhóm |
Giá trị đại diện |
Tần số |
Tần số tích lũy |
[40; 45) |
42,5 |
4 |
4 |
[45; 50) |
47,5 |
11 |
15 |
[50; 55) |
52,5 |
7 |
22 |
[55; 60) |
57,5 |
8 |
30 |
[60; 65) |
62,5 |
8 |
38 |
[65; 70) |
67,5 |
2 |
40 |
|
|
n = 40 |
|
⦁ Số trung bình cộng của mẫu số liệu ghép nhóm đã cho là:
⦁ Số phần tử của mẫu là n = 40. Ta có
Mà 15 < 20 < 22 nên nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 20.
Xét nhóm 3 là nhóm [50; 55) có r = 50, d = 5, n3 = 7 và nhóm 2 là nhóm [45; 50) có cf2 = 15.
Áp dụng công thức, ta có trung vị của mẫu số liệu là:
(km/h).
Do đó tứ phân vị thứ hai là Q2 = Me ≈ 53,6 (km/h).
⦁ Ta có . Mà 4 < 10 < 15 nên nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 10.
Xét nhóm 2 là nhóm [45; 50) có s = 45; h = 5; n2 = 11 và nhóm 1 là nhóm [40; 45) có cf1 = 4.
Áp dụng công thức, ta có tứ phân vị thứ nhất là:
(km/h).
⦁ Ta có . Mà cf4 = 30 nên nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 30.
Xét nhóm 4 là nhóm [55; 60) có t = 55; l = 5; n4 = 8 và nhóm 3 là nhóm [50; 55) có cf1 = 22.
Áp dụng công thức, ta có tứ phân vị thứ ba là:
(km/h).
Câu 20:
23/07/2024c) Nhóm 2 là nhóm [45; 50) có tần số lớn nhất với u = 45, g = 5, n2 = 11 và nhóm 1 có tần số n1= 4, nhóm 3 có tần số n3 = 7.
Áp dụng công thức, ta có mốt của mẫu số liệu là:
(km/h).
Câu 21:
22/07/2024Mẫu số liệu sau ghi lại cân nặng của 30 bạn học sinh (đơn vị: kilôgam):
a) Lập bảng tần số ghép nhóm cho mẫu số liệu trên có tám nhóm ứng với tám nửa khoảng:
[15; 20), [20; 25), [25; 30), [30; 35), [35; 40), [40; 45), [45; 50), [50; 55).
a) Bảng tần số ghép nhóm cho mẫu số liệu trên như sau:
Nhóm |
Tần số |
[15; 20) |
1 |
[20; 25) |
0 |
[25; 30) |
0 |
[30; 35) |
1 |
[35; 40) |
10 |
[40; 45) |
17 |
[45; 50) |
0 |
[50; 55) |
1 |
|
n = 30 |
Câu 22:
23/07/2024b) Xác định số trung bình cộng, trung vị, tứ phân vị của mẫu số liệu ghép nhóm trên.
b) Bảng tần số ghép nhóm bao gồm giá trị đại diện và tần số tích lũy như sau:
Nhóm |
Giá trị đại diện |
Tần số |
Tần số tích lũy |
[15; 20) |
17,5 |
1 |
1 |
[20; 25) |
22,5 |
0 |
1 |
[25; 30) |
27,5 |
0 |
1 |
[30; 35) |
32,5 |
1 |
2 |
[35; 40) |
37,5 |
10 |
12 |
[40; 45) |
42,5 |
17 |
29 |
[45; 50) |
47,5 |
0 |
29 |
[50; 55) |
52,5 |
1 |
30 |
|
|
n = 30 |
|
⦁ Số trung bình cộng của mẫu số liệu ghép nhóm đã cho là:
⦁ Số phần tử của mẫu là n = 30. Ta có
Mà 12 < 15 < 29 nên nhóm 6 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 15.
Xét nhóm 6 là nhóm [40; 45) có r = 40, d = 5, n6 = 17 và nhóm 5 là nhóm [35; 40) có cf5 = 12.
Áp dụng công thức, ta có trung vị của mẫu số liệu là:
(kg).
Do đó tứ phân vị thứ hai là Q2 = Me ≈ 40,9 (kg).
⦁ Ta có . Mà 2 < 7,5 < 12 nên nhóm 5 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 7,5.
Xét nhóm 5 là nhóm [35; 40) có s = 35; h = 5; n5 = 10 và nhóm 4 là nhóm [30; 35) có cf4 = 2.
Áp dụng công thức, ta có tứ phân vị thứ nhất là:
(kg).
⦁ Ta có . Mà 12 < 22,5 < 29 nên nhóm 6 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 22,5.
Xét nhóm 6 là nhóm [40; 45) có t = 40; l = 5; n4 = 17 và nhóm 5 là nhóm [35; 40) có cf5 = 12.
Áp dụng công thức, ta có tứ phân vị thứ ba là:
(kg).
Câu 23:
22/07/2024c) Nhóm 6 là nhóm [40; 45) có tần số lớn nhất với u = 40, g = 5, n6 = 17 và nhóm 5 có tần số n5 = 10, nhóm 7 có tần số n7 = 0.
Áp dụng công thức, ta có mốt của mẫu số liệu là:
(kg).
Câu 24:
22/07/2024Bảng 15 cho ta bảng tần số ghép nhóm số liệu thống kê chiều cao của 40 mẫu cây ở một vườn thực vật (đơn vị: centimét).
Nhóm |
Tần số |
Tần số tích lũy |
[30; 40) [40; 50) [50; 60) [60; 70) [70; 80) [80; 90) |
4 10 14 6 4 2 |
4 14 28 34 38 40 |
|
n = 40 |
|
Bảng 15
a) Xác định số trung bình cộng, trung vị, tứ phân vị của mẫu số liệu ghép nhóm trên.
a) Bảng tần số ghép nhóm bao gồm giá trị đại diện và tần số tích lũy như sau:
Nhóm |
Giá trị đại diện |
Tần số |
Tần số tích lũy |
[30; 40) |
35 |
4 |
4 |
[40; 50) |
45 |
10 |
14 |
[50; 60) |
55 |
14 |
28 |
[60; 70) |
65 |
6 |
34 |
[70; 80) |
75 |
4 |
38 |
[80; 90) |
85 |
2 |
40 |
|
|
n = 40 |
|
⦁ Số trung bình cộng của mẫu số liệu ghép nhóm đã cho là:
⦁ Số phần tử của mẫu là n = 40. Ta có
Mà 14 < 20 < 28 nên nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 20.
Xét nhóm 3 là nhóm [50; 60) có r = 50, d = 10, n3 = 14 và nhóm 2 là nhóm [40; 50) có cf2 = 14.
Áp dụng công thức, ta có trung vị của mẫu số liệu là:
(cm).
Do đó tứ phân vị thứ hai là Q2 = Me ≈ 54,29 (cm).
⦁ Ta có . Mà 4 < 10 < 14 nên nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 10.
Xét nhóm 2 là nhóm [40; 50) có s = 40; h = 10; n2 = 10 và nhóm 1 là nhóm [30; 40) có cf1 = 4.
Áp dụng công thức, ta có tứ phân vị thứ nhất là:
(cm).
⦁ Ta có Mà 28 < 30 < 34 nên nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 30.
Xét nhóm 4 là nhóm [60; 70) có t = 60; l = 10; n4 = 6 và nhóm 3 là nhóm [50; 60) có cf3 = 28.
Áp dụng công thức, ta có tứ phân vị thứ ba là:
(cm).
Câu 25:
19/07/2024b) Nhóm 3 là nhóm [50; 60) có tần số lớn nhất với u = 50, g = 10, n3 = 14 và nhóm 2 có tần số n2 = 10, nhóm 4 có tần số n4 = 6.
Áp dụng công thức, ta có mốt của mẫu số liệu là:
(cm).