Câu hỏi:
07/10/2024 139Tính thể tích V của khối lăng trụ tam giác đều có tất cả các cạnh bằng a.
A.
B.
C.
D.
Trả lời:
Đáp án đúng: A.
*Phương pháp giải:
- Lăng trụ tam giác đều là lăng trụ đứng có đáy là tam giác đều nên các cạnh bằng nhau và các góc bằng nhau
- Áp dụng công thức V = B.h trong đó B là diện tích tam giác đều cạnh a và h là chiều cao của lăng trụ
*Lời giải:
Đáy ABC là tam giác đều cạnh a nên có diện tích là :
Đường cao của hình lăng trụ: h = AA’ = a
Thể tích của khối lăng trụ là:
*Các dạng bài về hình lăng trụ đứng tam giác
a) Nhận biết các yếu tố của lăng trụ đứng tam giác, tứ giác
*Phương pháp: vẽ hình, quan sát để xác định các mặt, các cạnh, các đỉnh.Để vẽ hình lăng trụ đứng, ta thường vẽ một đáy, sau đó vẽ các cạnh bên là các đoạn thẳng song song và bằng nhau.
b) Tính diện tích, thể tích của hình lăng trụ đứng tam giác, tứ giác
* lăng trụ đứng tam giác:
+ Diện tích xung quanh của hình lăng trụ đứng tam giác bằng tích của chu vi đáy với chiều cao của nó.
+ Diện tích toàn phần: Diện tích toàn phần bằng diện tích xung quanh cộng diện tích hai đáy.
+ Thể tích của hình lăng trụ đứng tam giác bằng diện tích đáy nhân với chiều cao.
* lăng trụ đứng tứ giác:
+ Diện tích xung quanh của hình lăng trụ đứng tứ giác bằng tích của chu vi đáy với chiều cao của nó.
+ Diện tích toàn phần: Diện tích toàn phần bằng diện tích xung quanh cộng diện tích hai đáy.
+ Thể tích của hình lăng trụ đứng tứ giác bằng diện tích đáy nhân với chiều cao.
Xem thêm các bài viết liên quan hay, chi tiết:
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S. ABC có SA vuông góc với đáy. Tam giác ABC vuông cân tại B, biết SA= AC = 2a. Tính thể tích khối chóp S. ABC
Câu 2:
Cho quả địa cầu có độ dài đường kinh tuyến Đông là cm. Độ dài đường xích đạo là
Câu 3:
Cho lăng trụ đứng ABC.A’B’ C’ có đáy là tam giác vuông tại A,AC = a và ; góc giữa BC’ và (AA’C) bằng . Tính thể tích V của khối lăng trụ ABC.A’B’C’
Câu 4:
Cho hình thang vuông ABCD tại A và D, AD = CD = a, AB = 2a. Quay hình thang ABCD xung quanh đường thẳng CD. Thể tích khối tròn xoay thu được là
Câu 5:
Cho hình chóp S.ABC có thể tích bằng , đáy là tam giác đều cạnh . Tính chiều cao h của hình chóp đã cho
Câu 6:
Cho khối lăng trụ ABC.A'B'C' . Gọi M là trung điểm của BB' , N là điểm trên cạnh CC' sao cho CN = NC’. Mặt phẳng ( AMN ) chia khối lăng trụ thành hai phần có thể tích và như hình vẽ. Tính tỉ số
Câu 7:
Cho mặt cầu (S) bán kính R. Hình nón (N) thay đổi có đỉnh và đường tròn đáy thuộc mặt cầu (S) Tính thể tích lớn nhất của khối nón (N) đổi có đỉnh và đường tròn đáy thuộc mặt cầu (S) Tính thể tích lớn nhất của khối nón (N)
Câu 8:
Cho tứ diện ABCD có thể tích là V. Điểm M thay đổi trong tam giác BCD. Các đường thẳng qua M và song song với AB, AC, AD lần lượt cắt các mặt phẳng (ACD), (ABD), (ABC) tại N, P, Q. Giá trị lớn nhất của thể tích khối đa diện MNPQ là
Câu 9:
Cho khối tứ diện ABCD có thể tích V. Gọi là trọng tâm của 4 mặt của tứ diện ABCD. Thể tích của khối tứ diện là
Câu 11:
Cho khối lăng trụ ABC. A’B’C’ có thể tích là V. Điểm M là trung điểm của cạnh AA’. Tính theo V thể tích khối chóp M. BCC’B’
Câu 12:
Cho hình chóp S. ABC có SA vuông góc với đáy, tam giác ABC vuông tại B. Biết SA= AB =BC Tính góc giữa đường thẳng SB và mặt phẳng (SAC)
Câu 13:
Cho hình trụ có thiết diện qua trục là hình vuông cạnh 2a. Mặt phẳng (P) song song với trục và cách trục một khoảng . Tính diện tích thiết diện của hình trụ cắt bởi (P)
Câu 15:
Một hình trụ có bán kính đáy bằng với chiều cao của nó. Biết thể tích của khối trụ đó bằng 8π, tính chiều cao h của hình trụ