Câu hỏi:
20/07/2024 189Tính thể tích V của khối chóp S.ABC có đáy ABC là tam giác vuông tại A, AB=3a, BC=5a, SA = 2a, và mặt phẳng (SAC) vuông góc mặt đáy.
A.
B.
C.
D.
Trả lời:
Đáp án D
Trong tam giác SAC, kẻ SH vuông góc AC tại H. Lúc đó
Vì nên .
Trong tam giác ABC ta có AC=4a và
Vậy .
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy và SO tạo với mặt phẳng đáy một góc 450. Tính thể tích V của khối chóp S.ABCD.
Câu 2:
Cho hình chóp S. ABCD có đáy ABCD là hình chữ nhật với AB = a, BC = a. Cạnh bên SA vuông góc với đáy và đường thẳng SC tạo với mặt phẳng (SAB) một góc 30 độ. Tính thể tích V của khối chóp S.ABCD theo a.
Câu 3:
Cho hình chóp đều S. ABCD có AC = 2a, góc giữa mặt phẳng (SBC) và mặt phẳng (ABCD) bằng 450. Tính thể tích V của khối chóp S.ABCD theo a.
Câu 4:
Cho khối chóp S.ABCD có đáy là hình chữ nhật cạnh AB=3a, BC=a. Cạnh bên SA vuông góc với đáy; SC tạo với mặt phẳng (ABCD) một góc 600. Tính thể tích V của khối chóp đã cho.
Câu 5:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh . Cạnh bên SA vuông góc với mặt phẳng (ABCD) và SC=4a. Tìm thể tích khối chóp S.ABCD.
Câu 6:
Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a, SA=a và SA vuông góc với đáy. Gọi M là trung điểm SB, N là điểm thuộc cạnh SD sao cho SN=2ND. Tính thể tích V của khối tứ diện ACMN.
Câu 7:
Cho hình chóp S. ABC có đáy là tam giác ABC đều cạnh a, tam giác SBA vuông tại B, tam giác SAC vuông tại C. Biết góc giữa hai mặt phẳng (SAB) và (ABC) bằng . Tính thể tích khối chóp S.ABC theo a.
Câu 8:
Cho khối chóp S. ABC có góc và SA=2, SB=3, SC=4. Thể tích khối chóp S. ABC.
Câu 9:
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Cạnh bên SA vuông góc với mặt phẳng đáy, SA=a. Gọi M là điểm nằm trên cạnh CD. Tính thể tích khối chóp S.ABM.
Câu 10:
Cho khối tứ diện ABCD có thể tích V và điểm E trên cạnh AB sao cho AE = 3EB. Tính thể tích khối tứ diện EBCD theo V.
Câu 11:
Cho khối chóp S. ABC có , SA=a, SB=2a, SC=4a. Tính thể tích khối chóp S. ABC theo a.
Câu 12:
Cho hình tứ diện đều ABCD có cạnh bằng 3. Gọi G₁, G₂, G₃, G₄ lần lượt là trọng tâm của bốn mặt của tứ diện ABCD. Tính thể tích V của khối tứ diện G₁G₂G₃G₄.
Câu 13:
Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân tại B, AB = a, tam giác SAC cân tại S và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp S.ABC biết góc giữa SB và mặt phẳng (ABC) bằng 450.
Câu 14:
Cho khối lăng trụ đứng, mặt phẳng (P) đi qua C' và các trung điểm của AA', BB' chia khối lăng trụ ABC. A'B'C' thành hai khối đa diện có tỷ số thể tích bằng k với k ≤ 1. Tìm k.
Câu 15:
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác cân tại A, và BC =AA' = a. Tính theo a thể tích V của khối lăng trụ ABC.A'B'C'.