Câu hỏi:
20/07/2024 181
Nguồn sóng có phương trình \({u_0} = 5\cos \left( {2\pi t + \frac{\pi }{6}} \right)(cm)\). Biết sóng lan truyền với bước sóng \(40\;cm\). Coi biên độ sóng không đổi. Phương trình dao động của sóng tại điểm \(M\) cách \(O\) một đoạn \(10\;cm\) nằm trên phương truyền sóng là:
Nguồn sóng có phương trình \({u_0} = 5\cos \left( {2\pi t + \frac{\pi }{6}} \right)(cm)\). Biết sóng lan truyền với bước sóng \(40\;cm\). Coi biên độ sóng không đổi. Phương trình dao động của sóng tại điểm \(M\) cách \(O\) một đoạn \(10\;cm\) nằm trên phương truyền sóng là:
A. \({u_M} = 5\cos \left( {2\pi t + \frac{\pi }{6}} \right)(cm)\).
B. \({u_M} = 5\cos \left( {2\pi t + \frac{\pi }{3}} \right)(cm)\).
B. \({u_M} = 5\cos \left( {2\pi t + \frac{\pi }{3}} \right)(cm)\).
C. \({u_M} = 5\cos \left( {2\pi t - \frac{\pi }{3}} \right)(cm)\).
D. \({u_M} = 5\cos \left( {2\pi t - \frac{\pi }{6}} \right)(cm)\)
D. \({u_M} = 5\cos \left( {2\pi t - \frac{\pi }{6}} \right)(cm)\)
Trả lời:
Ta có: \(\begin{array}{l}{u_M} = 5.\cos (2\pi .t + \frac{\pi }{6} - \frac{{2\pi .x}}{\lambda })\\\,\,\,\,\,\,\, = 5.\cos (2\pi .t + \frac{\pi }{6} - \frac{{2\pi .10\,cm}}{{40\,cm}}) = 5.\cos (2\pi .t - \frac{\pi }{3})\end{array}\)
Chọn đáp án C
Ta có: \(\begin{array}{l}{u_M} = 5.\cos (2\pi .t + \frac{\pi }{6} - \frac{{2\pi .x}}{\lambda })\\\,\,\,\,\,\,\, = 5.\cos (2\pi .t + \frac{\pi }{6} - \frac{{2\pi .10\,cm}}{{40\,cm}}) = 5.\cos (2\pi .t - \frac{\pi }{3})\end{array}\)
Chọn đáp án C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Hai vật A và B dao động điều hòa cùng tần số. Hình bên là đồ thị biểu diễn sự phụ thuộc của li độ x1 của A và li độ x2 của B theo thời gian t. Hai dao động của A và B lệch pha nhau:
Hai vật A và B dao động điều hòa cùng tần số. Hình bên là đồ thị biểu diễn sự phụ thuộc của li độ x1 của A và li độ x2 của B theo thời gian t. Hai dao động của A và B lệch pha nhau:
Câu 2:
Con lắc đơn có chiều dài \(l\), đặt ở nơi có \(g = {\pi ^2}\;m/{s^2}\). Con lắc này dao động dưới tác dụng của ngoại lực \(F = 40\cos (\pi t)N\) thì con lắc dao động có biên độ cực đại. Tính chiều dài con lắc
Con lắc đơn có chiều dài \(l\), đặt ở nơi có \(g = {\pi ^2}\;m/{s^2}\). Con lắc này dao động dưới tác dụng của ngoại lực \(F = 40\cos (\pi t)N\) thì con lắc dao động có biên độ cực đại. Tính chiều dài con lắc
Câu 3:
Một vật dao động điều hoà có phương trình dao động \(x = 2\sin (5\pi t + \pi /3)cm\). Vận tốc của vật ở thời điểm \(t = 2(\;s)\) là
Một vật dao động điều hoà có phương trình dao động \(x = 2\sin (5\pi t + \pi /3)cm\). Vận tốc của vật ở thời điểm \(t = 2(\;s)\) là
Câu 5:
Một vật dao động điều hòa theo phương trình \(x = A\cos (\omega t + \varphi )(cm)\), đại lượng \(\omega t + \varphi \) gọi là
Một vật dao động điều hòa theo phương trình \(x = A\cos (\omega t + \varphi )(cm)\), đại lượng \(\omega t + \varphi \) gọi là
Câu 6:
Con lắc lò xo đang dao động điều hòa. Khi vật nhỏ có khối lượng m, con lắc này dao động điều hoà với tần số \(f = 5\;Hz\). Khi treo vật khác có khối lượng \(m' = m - 0,15kg\) thì chu kì dao động của con lắc là \(T' = 0,1s\). Vật nhỏ có khối lượng m bằng
Câu 7:
Con lắc đơn dao động điều hòa tại nơi có \(g = 9,81\;m/{s^2}\), với chu kì \(T = 2\;s\). Chiều dài của con lắc là
Con lắc đơn dao động điều hòa tại nơi có \(g = 9,81\;m/{s^2}\), với chu kì \(T = 2\;s\). Chiều dài của con lắc là
Câu 9:
Nguồn sóng đặt tại O dao động với tần số 10 Hz. Điểm M nằm cách O đoạn 20 cm. Biết tốc độ truyền sóng là 40 cm/s. Giữa O và M có bao nhiêu điểm dao động ngược pha với nguồn?
Nguồn sóng đặt tại O dao động với tần số 10 Hz. Điểm M nằm cách O đoạn 20 cm. Biết tốc độ truyền sóng là 40 cm/s. Giữa O và M có bao nhiêu điểm dao động ngược pha với nguồn?
Câu 10:
Một con lắc lò xo có độ cứng \(k = 40\;N/m\) đang dao động điều hòa. Lúc động năng \(20\;mJ\) thì thế năng bằng \(12\;mJ\). Mốc thế năng được chọn ở vị trí cân bằng. Biên độ dao động của vật bằng
Một con lắc lò xo có độ cứng \(k = 40\;N/m\) đang dao động điều hòa. Lúc động năng \(20\;mJ\) thì thế năng bằng \(12\;mJ\). Mốc thế năng được chọn ở vị trí cân bằng. Biên độ dao động của vật bằng
Câu 11:
Một con lắc đơn có độ dài \(l\), trong khoảng thời gian \(\Delta t\) nó thực hiện được \({\rm{6}}\) dao động. Người ta giảm bớt độ dài của nó đi \(28\;cm\), cũng trong thời gian \(\Delta t\) như trước nó thực hiện được 8 dao động. Chiều dài của con lắc ban đầu là
Một con lắc đơn có độ dài \(l\), trong khoảng thời gian \(\Delta t\) nó thực hiện được \({\rm{6}}\) dao động. Người ta giảm bớt độ dài của nó đi \(28\;cm\), cũng trong thời gian \(\Delta t\) như trước nó thực hiện được 8 dao động. Chiều dài của con lắc ban đầu là
Câu 12:
Một vật có khối lượng \({\rm{10}}\;g\) đang dao động điều hòa với biên độ \({\rm{5}}\;cm\) và tần số góc là \({\rm{10}}rad/s\). Lực kéo về cực đại tác dụng lên vật là
Một vật có khối lượng \({\rm{10}}\;g\) đang dao động điều hòa với biên độ \({\rm{5}}\;cm\) và tần số góc là \({\rm{10}}rad/s\). Lực kéo về cực đại tác dụng lên vật là
Câu 13:
Một vật thực hiện đồng thời hai dao động điều hoà cùng phương, cùng tần số có biên độ lần lượt là 8 cm và 2 cm. Biên độ dao động tổng hợp có thể là
Một vật thực hiện đồng thời hai dao động điều hoà cùng phương, cùng tần số có biên độ lần lượt là 8 cm và 2 cm. Biên độ dao động tổng hợp có thể là
Câu 14:
Cho con lắc đơn chiều dài \(l\) dao động điều hoà với chu kỳ T. Tại nơi đó, nếu tăng chiều dài con lắc gấp 16 lần và tăng khối lượng vật treo gấp 4 lần thì chu kỳ con lắc
Cho con lắc đơn chiều dài \(l\) dao động điều hoà với chu kỳ T. Tại nơi đó, nếu tăng chiều dài con lắc gấp 16 lần và tăng khối lượng vật treo gấp 4 lần thì chu kỳ con lắc