Câu hỏi:
22/07/2024 141Một người đo chiều cao của cây nhờ 1 cọc chôn xuống đất, cọc cao 2,45 m và đặt xa cây 1,36m. Sau khi người ấy lùi ra xa cách cọc 0,64m thì người ấy nhìn thấy đầu cọc và đỉnh cây cùng nằm trên một đường thẳng, Hỏi cây cao bao nhiêu? Biết khoảng cách từ chân đến mắt người ấy là 1,65m.
A. 4,51m
B. 5,14m
C. 5,41m
D. 4,15m
Trả lời:
Đáp án D
Ta mô tả vị trí cây, cọc và người như hình vẽ bên.
Xét ΔBFE và ΔBNM ta có:
Góc B chung
(vì EF // MN, cặp góc đồng vị bằng nhau)
=> ΔBFE ~ ΔBNM (g - g)
1,65(BF + 0,64) = 2,45.BF
BF = 1,32m
Xét ΔBFE và ΔBCA có:
Góc B chung
(vì EF // AC, cặp góc đồng vị bằng nhau)
=> ΔBFE ~ ΔBCA (g - g)
=> CA = 4,15m
Vậy cây cao đúng bằng độ dài của đoạn CA hay cây cao 4,15m.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ΔA’B’C’ ~ ΔABC. Biết và hiệu 2 chu vi của 2 tam giác là 16m. Tính chu vi mỗi tam giác?
Câu 2:
Cho ΔABC vuông tại A, đường cao AH. Gọi I và K lần lượt là hình chiếu của H lên AB và AC. Tam giác AIK đồng dạng với tam giác nào dưới đây?
Câu 3:
Cho đoạn AC vuông góc với CE. Nối A với trung điểm D của CE và E với trung điểm B của AC, AD và EB cắt nhau tại F. Cho BC = CD = 15cm. Tính diện tích tam giác DEF theo đơn vị ?
Câu 4:
Cho ΔA’B’C’ ~ ΔABC có chu vi lần lượt là 50cm và 60cm. Diện tích của ΔABC lớn hơn diện tích của ΔA’B’C’ là . Tính diện tích tam giác ABC.
Câu 6:
Tỉ số các cạnh bé nhất của 2 tam giác đồng dạng bằng . Tính chu vi p, p’ của 2 tam giác đó, biết p’ - p = 18?
Câu 7:
Cho hình bình hành ABCD, điểm F nằm trên cạnh BC. Tia AF cắt BD và DC lần lượt ở E và G. Chọn câu đúng nhất.
Câu 8:
Cho hình chữ nhật ABCD có E là trung điểm của AB. Tia DE cắt AC ở F, cắt CB ở G. Chọn câu đúng.