Câu hỏi:
23/11/2024 168Một hộp đựng mỹ phẩm được thiết kế (tham khảo hình vẽ) có thân hộp là hình trụ có bán kính hình tròn đáy r=5cm, chiều cao h=6cm và nắp hộp là một nửa hình cầu. Người ta cần sơn mặt ngoài của cái hộp đó (không sơn đáy) thì diện tích S cần sơn là
Trả lời:
Đáp án đúng: B
* Lời giải:
* Phương pháp giải:
- Áp dụng công thức tính diện tích hình trụ và nửa hình cầu
*Một số lý thuyết và dạng bài tập về mặt nón, mặt trụ và mặt cầu:
Hình nón là hình được tạo ra khi quay tam giác vuông một vòng quanh một góc vuông cố định.
- Mặt đáy: là mặt phẳng có hình dạng hình chọn của hình nón.
- Đường cao: là khoảng cách từ tâm mặt đáy đến đỉnh của hình chóp hay được gọi là đường cao hạ từ đỉnh xuống tâm đáy hình nón. Được ký hiệu là: h.
- Đường sinh: là khoảng cách từ một điểm bất kỳ trên đường tròn đấy đến đỉnh của hình chóp. Được ký hiệu là: l.
- Bán kính đáy: là khoảng cách từ tâm đến một điểm trên hình tròn của mặt phẳng đáy. Được ký hiệu là: r.
1. Công thức tính diện tích đáy
- Đáy hình nón là hình tròn nên
2. Công thức tính diện tích xung quanh hình nón
Cho hình nón có bán kính đáy r và độ dài đường sinh l.
Khi đó:
Sxq = .r.l
3. Công thức tính diện tích toàn phần hình nón
Cho hình nón có bán kính r, chiều cao h và đường sinh l
Diện tích toàn phần:
Cho mặt cầu S(I; R).
Diện tích mặt cầu:
Thể tích khối cầu:
Dạng 1: Mặt cầu ngoại tiếp hình chóp
* Phương pháp giải:
- Xác định trục d của đường tròn ngoại tiếp đa giác đáy (d là đường thẳng vuông góc với đáy tại tâm đường tròn ngoại tiếp đa giác đáy).
- Xác định mặt phẳng trung trực (P) của một cạnh bên (hoặc trục ∆ của đường tròn ngoại tiếp một đa giác của mặt bên).
- Giao điểm I của (P) và d (hoặc của ∆ và d) là tâm mặt cầu ngoại tiếp.
- Kết luận: I là tâm mặt cầu ngoại tiếp chóp.
Xem thêm các bài viết liên quan hay, chi tiết
Chuyên đề Mặt nón, mặt trụ, mặt cầu mới nhất - Toán 12
261 Bài tập trắc nghiệm Hình học Mặt nón, mặt trụ, mặt cầu cực hay có lời giải chi tiết
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một hình nón có chiều cao 2a, bán kính đáy . Một phẳng phẳng đi qua đỉnh và tạo với mặt đáy góc . Tính diện tích thiết diện
Câu 2:
Một hình trụ có diện tích toàn phần là và bán kính đáy bằng 6. Hỏi chiều cao của hình trụ là bao nhiêu?
Câu 3:
Cho hình nón đỉnh S đáy là đường tròn C(O;R), đường cao SO=40cm. Người ta cắt nón bằng mặt phẳng vuông góc với trục để được nón nhỏ có đỉnh S và đáy là đường tròn C'(O';R'). Biết rằng tỷ số thể tích = . Tính độ dài đường cao nón .
Câu 4:
Cắt hình nón (N) bởi một mặt phẳng đi qua trục của nó, ta được thiết diện là một tam giác đều cạnh 2a. Thể tích khối cầu ngoại tiếp hình nón (N) theo a là
Câu 5:
Một khối đồ chơi có dạng khối nón, chiều cao bằng 20cm, trong đó có chứa một lượng nước. Nếu đặt khối đồ chơi theo hình thì chiều cao lượng nước bằng chiều cao của khối nón. Hỏi nếu đặt khối đồ chơi theo hình thì chiều cao h' của lượng nước trong khối đó gần với giá trị nào sau đây?
Câu 6:
Cho hình nón đỉnh I, đường cao SO và có độ dài đường sinh bằng 3cm, góc ở đỉnh bằng . Gọi K là điểm thuộc đoạn SO thỏa mãn , cắt hình nón bằng mặt phẳng (P) qua K và vuông góc với IO, khi đó thiết diện tạo thành có diện tích là S. Tính S.
Câu 7:
Cho hình nón có bán kính đáy bằng 2 cm, góc ở đỉnh bằng . Tính thể tích của khối nón đó
Câu 8:
Cho hình nón (N) có bán kính đáy bằng 6 và chiều cao bằng 12. Mặt cầu (S) ngoại tiếp hình nón (N) có tâm là I. Một điểm M di động trên mặt đáy của nón (N) và cách I một đoạn bằng 6. Quỹ tích tất cả các điểm M tạo thành đường cong có tổng độ dài bằng
Câu 9:
Thể tích của khối nón có thiết diện qua trục là tam giác đều cạnh a bằng
Câu 10:
Cho tam giác ABC cân tại A, biết AB=2a và góc , cho tam giác ABC (kể cả điểm trong) quay xung quanh đường thẳng AC được khối tròn xoay. Khi đó thể tích khối tròn xoay bằng
Câu 11:
Gọi (H) là hình tròn xoay thu được khi cho tam giác đều ABC có cạnh a quay quanh AB, tính thể tích khối tròn xoay giới hạn bởi (H)
Câu 12:
Cho hình hộp chữ nhật ABCDA'B'C'D' có AB=a, AD=2a, AA'=3a. Thể tích khối nón có đỉnh trùng với tâm của hình chữ nhật ABCD, đường tròn đáy ngoại tiếp A'B'C'D' là:
Câu 13:
Cho hình thang cân ABCD, ABCD, AB=6cm, CD=2cm, AD=BC=cm. Quay hình thang ABCD xung quanh đường thẳng AB ta được một khối tròn xoay có thể tích là:
Câu 14:
Một hình tứ diện đều cạnh a có một đỉnh trùng với đỉnh hình nón, ba đỉnh còn lại nằm trên đường tròn đáy của hình nón. Diện tích xung quanh của hình nón bằng:
Câu 15:
Cho hình lăng trụ đều và một hình trụ có hai đáy là hai hình tròn ngoại tiếp hai mặt đáy của hình lăng trụ. Gọi lần lượt là thể tích khối lăng trụ và khối trụ. Tính