Câu hỏi:
19/07/2024 254Hình vẽ bên là đồ thị của hàm số y = f(x)
Gọi S là tập hợp các giá trị nguyên dương của tham số m để hàm số có 5 điểm cực trị. Tổng giá trị tất cả các phần tử của S bằng:
A. 12
B. 15
C. 18
D. 9
Trả lời:
Đáp án A
Nhận xét: Số giao điểm của với Ox bằng số giao điểm của với Ox (vì đồ thị hàm số có được chỉ là do ta tịnh tiến đồ thị hàm số sang phải 1 đơn vị)
Vì m > 0 nên có được bằng cách tịnh tiến lên trên m đơn vị
Ta sẽ biện luận số giao điểm của với trục Ox (cũng chính là giao điểm của với y = - m) để suy ra cực trị của hàm số
+ TH1:
Đồ thị hàm số có dạng:
Đồ thị hàm số có 3 điểm cực trị. Loại
+ TH2:
Đồ thị hàm số có dạng:
Đồ thị hàm số có 5 điểm cực trị, nhận
+TH3:
Đồ thị hàm số có dạng:
Đồ thị hàm số có 5 điểm cực trị, nhận
+ TH4:
Đồ thị hàm số có dạng:
Đồ thị hàm số có 7 điểm cực trị, loại
Vậy . Do
Vậy tổng giá trị tất cả các phần tử của S bằng 12
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y = f(x) liên tục trên R có đồ thị như hình vẽ bên. Tập hợp tất cả các giá trị thực của tham số m để phương trình có nghiệm thuộc khoảng là:
Câu 2:
Nhà xe khoán cho hai tài xế tacxi A và Bình mỗi người lần lượt nhận 32 lít và 72 lít xăng. Hỏi tổng số ngày ít nhất là bao nhiêu để tài xế chạy tiêu thụ hết số xăng của mình được khoán, biết rằng chỉ tiêu cho hai người một ngày tổng cộng chỉ chạy đủ hết 10 lít xăng?
Câu 3:
Cho hàm số . Để hàm số đạt cực trị tại thỏa mãn thì a thuộc khoảng nào?
Câu 4:
Một sợi dây có chiều dài là 6m, được chia thành hai phần. Phần thứ nhất được uốn thành hình tam giác đều, phần thứ hai được uốn thành hình vuông. Hỏi độ dài của cạnh hình tam giác đều bằng bao nhiêu để diện tích hai hình thu được là nhỏ nhất?
Câu 5:
Tìm tất cả các giá trị thực của tham số m để đường thẳng cắt đồ thị (H) của hàm số tại hai điểm A, B phân biệt sao cho đặt giá trị nhỏ nhất với là hệ số góc của tiếp tuyến tại A, B của đồ thị (H)
Câu 6:
Một nhà máy cần thiết kế một chiếc bể đựng nước hình trụ bằng tôn có nắp, có thể tích là . Tìm bán kính đáy r của hình trụ sao cho hình trụ được làm ra tốn ít nhiên liệu nhất?
Câu 7:
Có bao nhiêu giá trị nguyên của tham số m để đường thẳng cắt đồ thị của hàm số tại bốn điểm phân biệt?
Câu 8:
Cho hàm số f (x) có bảng xét dấu của đạo hàm như sau:
Hàm số đồng biến trên khoảng nào dưới đây?
Câu 9:
Cho hàm số y = f(x) có bảng biến thiên như sau. Khẳng định nào dưới đây là đúng?
Câu 10:
Cho hàm số y = f(x) có bảng biến thiên:
Tiệm cận đứng và tiệm cận ngang của đồ thị hàm số cắt nhau tại điểm có tọa độ là:
Câu 11:
Cho x, y là các số thực thỏa mãn . Gọi M, m lần lượt là giá trị lớn nhất và nhỏ nhất của . Tìm giá trị M + m
Câu 12:
Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình đúng với mọi . Tổng giá trị của tất cả các phần tử thuộc S bằng:
Câu 13:
Cho hàm số y = f(x) có bảng biến thiên như sau. Khẳng định nào dưới đây là sai?
Câu 14:
Cho hàm số . Đồ thị hàm số như hình vẽ
Đặt , với m là tham số thực. Điều kiện cần và đủ để bất phương trình đúng với là:
Câu 15:
Cho hàm số có đồ thị (C). Tiếp tuyến tại điểm M bất kì thuộc (C) cắt 2 đường tiệm cận của (C) tạo thành một tam giác. Tính diện tích tam giác đó.