Câu hỏi:
15/07/2024 161Hãy chọn câu đúng. Cho hình bình hành ABCD. Lấy điểm E thuộc tia đối của tia AD sao cho AD = AE, lấy F thuộc tia đối của tia CD sao cho CD = CF. Hình bình hành ABCD có thêm điều kiện gì để E đối xứng với F qua đường thẳng DB?
Trả lời:
Gọi O là giao điểm hai đường chéo của hình bình hành ABCD khi đó OA = OC; OB = OD
Xét tam giác DBE ta có OA là đường trung bình nên OA // EB; OA = EB (1)
Tương tự OC là đường trung bình của tam giác BDF => OC // BF; OC = FB (2)
Từ (1); (2) => E, B, F thẳng hàng và EB = BF (vì OA = OC) hay E đối xứng với F qua điểm B.
Để E đối xứng với F qua đường thẳng BD ta cần thêm điều kiện EF ⊥ BD.
Mà AC là đường trung bình của tam giác DEF nên AC // EF suy ra BD ⊥ AC.
Vậy hình bình hành ABCD có thêm điều kiện hai đường chéo vuông góc thì E đối xứng với F qua đường thẳng DB.
Đáp án cần chọn là: C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC, trọng tâm G. Gọi N, P theo thứ tự là các điểm đối xứng của B, C qua trọng tâm G. Tứ giác BPNC là hình gì?
Câu 2:
Tam giác ABC đối xứng với tam giác A’B’C’ qua O. Biết chu vi của tam giác A’B’C’ là 40cm. Chu vi của tam giác ABC là:
Câu 3:
Tam giác ABC đối xứng với tam giác A’B’C’ qua O. Biết chu vi của tam giác A’B’C’ là 32cm. Chu vi của tam giác ABC là:
Câu 4:
Cho tam giác ABC, trong đó AB = 8cm, BC = 11cm. Vẽ hình đối xứng với tam giác ABC qua trung điểm của cạnh AC. Chu vi của tứ giác tạo thành là:
Câu 5:
Cho tam giác ABC, đường cao AH, trong đó BC = 18cm, AH = 3cm. Vẽ hình đối xứng với tam giác ABC qua trung điểm của cạnh BC. Diện tích của tam giác tạo thành là:
Câu 6:
Cho tam giác ABC có trung tuyến AM. Gọi D, E, F lần lượt là trung điểm của AB, AM, AC. Chọn câu đúng.
Câu 7:
Cho tam giác ABC, trong đó AB = 15cm, BC = 12cm. Vẽ hình đối xứng với tam giác ABC qua trung điểm của cạnh AC. Chu vi của tứ giác tạo thành là:
Câu 8:
Cho tam giác ABC, đường cao AH, trong đó BC = 30cm, AH = 18cm. Vẽ hình đối xứng với tam giác ABC qua trung điểm của cạnh BC. Diện tích của tam giác tạo thành là: