Câu hỏi:
14/07/2024 274Giả sử viên phấn viết bảng có dạng hình trụ tròn xoay, bán kính đáy bằng 0,5cm, chiều cao bằng 10cm. Người ta làm các hộp đựng phấn có dạng hình hộp chữ nhật với kích thước 5cmx9cmx10cm. Khi xếp 500 viên phấn vào 11 hộp ta được kết quả nào trong các khả năng sau:
Trả lời:
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một cơ sở sản xuất kem chuẩn bị làm 1000 chiếc kem giống nhau theo đơn đặt hàng. Cốc đựng kem có dạng hình tròn xoay được tạo thành khi quay hình thang ABCD vuông tại A và D xung quanh trục AD (xem hình vẽ). Chiếc cốc có bề dày không đáng kể, chiều cao 7,2cm; đường kính miệng cốc bằng 6,4cm; đường kính đáy cốc bằng 1,6cm. Kem được bỏ đầy cốc và dư ra phía ngoài một lượng có dạng nửa hình cầu, có bán kính bằng bán kính miệng cốc. Cơ sở đó cần dùng lượng kem gần nhất với giá trị nào trong các giá trị sau?
Câu 2:
Một cốc nước có dạng hình trụ chiều cao là 15cm, đường kính đáy là 6cm, lượng nước ban đầu trong cốc cao 10cm. Thả vào cốc nước 5 viên bi hình cầu có cùng đường kính là 2cm. Hỏi sau khi thả 5 viên bi, mực nước trong cốc cách miệng cốc bao nhiêu cm ? (Kết quả làm tròn sau dấu phẩy 2 chữ số).
Câu 3:
Cho hai hình vuông có cùng cạnh bằng 5 được xếp chồng lên nhau sao cho đỉnh X của một hình vuông là tâm của hình vuông còn lại (như hình vẽ). Tính thể tích V của vật thể tròn xoay khi quay mô hình trên xung quanh trục XY.
Câu 4:
Cho một chiếc cốc có dạng hình nón cụt và một viên bi có đường kính bằng chiều cao của cốc. Đổ đầy nước vào cốc rồi thả viên bi vào, ta thấy lượng nước tràn ra bằng một nửa lượng nước đổ vào cốc lúc ban đầu. Biết viên bi tiếp xúc với đáy cốc và thành cốc. Tìm tỉ số bán kính của miệng cốc và đáy cốc (bỏ qua độ dày của cốc).
Câu 5:
Có một cái cốc làm bằng giấy, được úp ngược như hình vẽ. Chiều cao của chiếc cốc là 20cm, bán kính đáy cốc là 4cm, bán kính miệng cốc là 5cm. Một con kiến đang đứng ở điểm A của miệng cốc dự định sẽ bò hai vòng quanh than cốc để lên đến đáy cốc ở điểm B. Quãng đường ngắn nhất để con kiến có thể thực hiện được dự định của mình gần đúng nhất với kết quả nào dước đây?
Câu 6:
Người ta chế tạo một món đồ chơi cho trẻ em theo các công đoạn như sau: Trước tiên chế tạo ra hình nón tròn xoay có góc ở đỉnh là bằng thủy tinh trong suốt. Sau đó đặt hai quả cầu nhỏ bằng thủy tinh có bán kính lớn, nhỏ khác nhau sao cho hai mặt cầu tiếp xúc với nhau sao cho hai mặt cầu tiếp xúc với nhau và đều tiếp xúc với mặt nón, quả cầu lớn tiếp xúc với mặt đáy của hình nón (hình vẽ). Biết rằng chiều cao của hình nón bằng 9cm. Bỏ qua bề dày các lớp vỏ thủy tinh, tổng thể tích của hai khối cầu bằng
Câu 7:
Người ta dự định thiết kế một cống ngầm thoát nước qua đường có chiều dài 30m, thiết diện thẳng của cống có diện tích để thoát nước là 4m2 (gồm hai phần nửa hình tròn và hình chữ nhật) như hình minh hoạ, phần đáy cống, thành cống và nắp cống (tô đậm như hình vẽ) được sử dụng vật liệu bê tông. Tính bán kính R (tính gần đúng với đơn vị m, sai số không quá 0,01) của nửa hình tròn để khi thi công tốn ít vật liệu nhất?
Câu 8:
Một khối đá có hình là một khối cầu có bán kính R, người thợ thợ thủ công mỹ nghệ cần cắt và gọt viên đá đó thành một viên đá cảnh có hình dạng là một khối trụ. Tính thể tích lớn nhất có thể của viên đá cảnh sau khi đã hoàn thiện.
Câu 9:
Một cái ống hình trụ tròn xoay bên trong rỗng, có chiều cao bằng 25cm và đường kính đáy bằng 6cm đặt trên cái bàn nằm ngang có mặt bàn phẳng sao cho một miệng ống nằm trên mặt bàn. Người ta đặt lên trên miệng ống còn lại một quả bóng hình cầu có bán kính 5cm. Tính khoảng cách lớn nhất h có thể từ một điểm trên quả bóng tới mặt bàn nếu coi độ dày của thành ống là không đáng kể.
Câu 10:
Xét một hộp bóng bàn có dạng hình hộp chữ nhật. Biết rằng hộp chứa vừa khít ba quả bóng bàn được xếp theo chiều dọc, các quả bóng bàn có kích thước như nhau. Phần không gian còn trống trong hộp chiếm:
Câu 11:
Một chiếc thùng đựng nước có hình của một khối lập phương cạnh 1m chứa đầy nước. Đặt vào trong thùng đó một khối có dạng nón sao cho đỉnh trùng với tâm một mặt của lập phương, đáy khối nón tiếp xúc với các cạnh của mặt đối diện. Tính tỉ số thể tích của lượng nước trào ra ngoài và lượng nước còn lại ở trong thùng.
Câu 12:
Một người dùng một cái ca hình bán cầu có bán kính là 3cm để múc nước đổ vào trong một thùng hình trụ chiều cao 10cm và bán kính đáy bằng 6cm. Hỏi người ấy sau bao nhiêu lần đổ thì nước đầy thùng? (Biết mỗi lần đổ, nước trong ca luôn đầy).
Câu 13:
Ban đầu ta có một tam giác đều cạnh bằng 3 (hình 1). Tiếp đó ta chia mỗi cạnh của tam giác thành 3 đoạn bằng nhau và thay mỗi đoạn ở giữa bằng hai đoạn bằng nó sao cho chúng tạo với đoạn bỏ đi một tam giác đều về phía bên ngoài ta được hình 2. Khi quay hình 2 xung quanh trục d ta được một khối tròn xoay. Tính thể tích khối tròn xoay đó.
Câu 14:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AD=a, là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Tính theo a diện tích S của mặt cầu ngoại tiếp hình chóp S.ABCD.
Câu 15:
Cho hai hình vuông có cùng cạnh bằng 5 được xếp chồng lên nhau sao cho đỉnh X của một hình vuông là tâm của hình vuông còn lại (như hình vẽ).
Tính thể tích V của vật thể tròn xoay khi quay mô hình trên xung quanh trục XY.