Câu hỏi:
16/07/2024 158
Chứng minh rằng nếu tứ giác có hai đường chéo bằng nhau và một cặp cạnh đối bằng nhau thì tứ giác đó là một hình thang cân (H.3.59).
Chứng minh rằng nếu tứ giác có hai đường chéo bằng nhau và một cặp cạnh đối bằng nhau thì tứ giác đó là một hình thang cân (H.3.59).
Trả lời:
Gọi O là giao điểm của AC và BD.
Xét ∆ABC và ∆BAD có:
AD = BC (giả thiết)
AC = BD (giả thiết)
Cạnh AB chung
Do đó ∆ABC = ∆BAD (c.c.c)
Suy ra (hai góc tương ứng).
Xét ∆ACD và ∆BDC có:
AD = BC (giả thiết)
AC = BD (giả thiết)
Cạnh CD chung
Do đó ∆ADC = ∆BCD (c.c.c)
Suy ra (hai góc tương ứng).
Xét ∆OAD và ∆OBC có:
(chứng minh trên)
AD = BC (giả thiết)
(chứng minh trên)
Do đó ∆OAD = ∆OBC (g.c.g).
Suy ra OA = OB; OC = OD (các cặp cạnh tương ứng).
Khi đó, các tam giác OAB, OCD là tam giác cân tại O.
Suy ra .
Xét ∆OAB và ∆OCD cân tại O có:
• (hai góc đối đỉnh)
•
•
Suy ra mà hai góc này ở vị trí so le trong.
Do đó AB // CD.
Tứ giác ABCD có AB // CD nên ABCD là hình thang.
Hình thang ABCD có hai đường chéo AC = BD.
Do đó tứ giác ABCD là hình thang cân.
Vậy nếu tứ giác có hai đường chéo bằng nhau và một cặp cạnh đối bằng nhau thì tứ giác đó là một hình thang cân.
Gọi O là giao điểm của AC và BD.
Xét ∆ABC và ∆BAD có:
AD = BC (giả thiết)
AC = BD (giả thiết)
Cạnh AB chung
Do đó ∆ABC = ∆BAD (c.c.c)
Suy ra (hai góc tương ứng).
Xét ∆ACD và ∆BDC có:
AD = BC (giả thiết)
AC = BD (giả thiết)
Cạnh CD chung
Do đó ∆ADC = ∆BCD (c.c.c)
Suy ra (hai góc tương ứng).
Xét ∆OAD và ∆OBC có:
(chứng minh trên)
AD = BC (giả thiết)
(chứng minh trên)
Do đó ∆OAD = ∆OBC (g.c.g).
Suy ra OA = OB; OC = OD (các cặp cạnh tương ứng).
Khi đó, các tam giác OAB, OCD là tam giác cân tại O.
Suy ra .
Xét ∆OAB và ∆OCD cân tại O có:
• (hai góc đối đỉnh)
•
•
Suy ra mà hai góc này ở vị trí so le trong.
Do đó AB // CD.
Tứ giác ABCD có AB // CD nên ABCD là hình thang.
Hình thang ABCD có hai đường chéo AC = BD.
Do đó tứ giác ABCD là hình thang cân.
Vậy nếu tứ giác có hai đường chéo bằng nhau và một cặp cạnh đối bằng nhau thì tứ giác đó là một hình thang cân.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
b) Tứ giác có hai cạnh đối nào cũng bằng nhau là hình bình hành.
b) Hình bình hành có hai cặp cạnh đối diện bằng nhau.
Nên tứ giác có hai cạnh đối nào cũng bằng nhau là hình bình hành.
Do đó khẳng định b) là đúng.
b) Tứ giác có hai cạnh đối nào cũng bằng nhau là hình bình hành.
b) Hình bình hành có hai cặp cạnh đối diện bằng nhau.
Nên tứ giác có hai cạnh đối nào cũng bằng nhau là hình bình hành.
Do đó khẳng định b) là đúng.
Câu 4:
d) Tứ giác có hai cạnh song song và hai cạnh còn lại bằng nhau là hình bình hành.
Câu 5:
c) Tứ giác có hai cạnh song song và hai đường chéo bằng nhau là hình thang cân.
Câu 7:
Trong các khẳng định sau, khẳng định nào đúng? Khẳng định nào sai?
a) Tứ giác có hai đường chéo bằng nhau là hình bình hành.
Trong các khẳng định sau, khẳng định nào đúng? Khẳng định nào sai?
a) Tứ giác có hai đường chéo bằng nhau là hình bình hành.
Câu 8:
Trong các khẳng định sau, khẳng định nào đúng?
A. Không có tứ giác nào mà không có góc tù.
B. Nếu tứ giác có ba góc nhọn thì góc còn lại là góc tù.
C. Nếu tứ giác có hai góc tù thì góc còn lại phải nhọn.
D. Không có tứ giác nào có ba góc tù.
Trong các khẳng định sau, khẳng định nào đúng?
A. Không có tứ giác nào mà không có góc tù.
B. Nếu tứ giác có ba góc nhọn thì góc còn lại là góc tù.
C. Nếu tứ giác có hai góc tù thì góc còn lại phải nhọn.
D. Không có tứ giác nào có ba góc tù.
Câu 9:
Trong các khẳng định sau, khẳng định nào đúng? Khẳng định nào sai?
a) Tứ giác có hai đường chéo bằng nhau và hai cạnh đối nào cũng bằng nhau là hình chữ nhật.
Trong các khẳng định sau, khẳng định nào đúng? Khẳng định nào sai?
a) Tứ giác có hai đường chéo bằng nhau và hai cạnh đối nào cũng bằng nhau là hình chữ nhật.