Câu hỏi:
18/07/2024 152Cho tứ giác ABCD có đường chéo BD chia tứ giác đó thành hai tam giác đồng dạng ΔABD ⁓ ΔBDC.
1. Chọn câu sai.
A.
B. ABCD là hình thang
C.
D. AD // BC
Trả lời:
Đáp án D
Vì ΔABD ⁓ ΔBDC (gt) nên (hai góc tương ứng).
Mà hai góc này ở vị trí so le trong nên AB // CD suy ra ABCD là hình thang (dấu hiệu nhận biết) hay B đúng
Lại có ΔABD ⁓ ΔBDC nên (cạnh tương ứng) nên A đúng
ΔABD ⁓ ΔBDC => (cạnh tương ứng)
=> hay C đúng
Chỉ có D sai
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Hãy chọn câu đúng. Hai ΔABC và ΔDEF có ; BC = 6cm. Nếu ΔABC đồng dạng với ΔDEF thì:
Câu 4:
Cho tứ giác ABCD có đường chéo BD chia tứ giác đó thành hai tam giác đồng dạng ΔABD và ΔBDC.
2. Tính các độ dài BD, BC biết AB = 2cm, AD = 3cm, CD = 8cm
Câu 5:
Cho tứ giác ABCD có đường chéo BD chia tứ giác đó thành hai tam giác đồng dạng ΔABD và ΔBDC.
1. Chọn câu đúng nhất.
Câu 6:
Cho tam giác ABC và hai điểm M, N lần lượt thuộc các cạnh BC, AC sao cho MN // AB. Chọn kết luận đúng
Câu 7:
Hãy chọn câu trả lời đúng. Nếu tam giác ABC đồng dạng với tam giác A’B’C’ theo tỉ số k thì tỉ số chu vi của tam giác A’B’C’ và ABC bằng
Câu 8:
Hãy chọn câu đúng. Tam giác ABC đồng dạng với tam giác MNP theo tỉ số , biết chu vi của tam giác ABC bằng 40 cm. Chu vi của tam giác MNP là:
Câu 9:
Hãy chọn câu đúng. Cho tam giác ABC có AB = AC = 5cm, BC = 4 cm đồng dạng với tam giác MNP theo tỉ số . Chu vi của tam giác MNP là:
Câu 10:
Hình thang ABCD (AB // CD) có AB = 9cm, CD = 12cm, hai đường chéo cắt nhau tại O. Chọn khẳng định không đúng.
Câu 11:
Cho tứ giác ABCD có đường chéo BD chia tứ giác đó thành hai tam giác đồng dạng ΔABD ⁓ ΔBDC.
2. Cho AB = 2cm, AD = 3cm, CD = 8cm. Tính độ dài cạnh còn lại của tứ giác ABCD.
Câu 12:
Hình thang ABCD (AB // CD) có AB = 10cm, CD = 25cm, hai đường chéo cắt nhau tại O.
Chọn khẳng định đúng.
Câu 13:
Hãy chọn câu trả lời đúng. Nếu tam giác ABC đồng dạng với tam giác A’B’C’ theo tỉ số k thì tỉ số chu vi của hai tam giác đó bằng