Câu hỏi:
23/07/2024 170Cho tứ giác ABCD có đường chéo BD chia tứ giác đó thành hai tam giác đồng dạng ΔABD và ΔBDC. Chọn câu đúng nhất.
A. AB // DC
B. ABCD là hình thang
C. ABCD là hình bình hành
D. Cả A, B đều đúng
Trả lời:
Vì ΔABD ⁓ ΔBDC (gt) nên (hai góc tương ứng).
Mà hai góc này ở vị trí so le trong nên AB // CD suy ra ABCD là hình thang (dấu hiệu nhận biết)
Đáp án: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Hãy chọn câu đúng. Hai ΔABC và ΔDEF có ; BC = 6cm. Nếu ΔABC đồng dạng với ΔDEF thì:
Câu 3:
Hãy chọn câu đúng. Cho tam giác ABC có AB = AC = 5cm, BC = 4 cm đồng dạng với tam giác MNP theo tỉ số . Chu vi của tam giác MNP là:
Câu 6:
Cho tam giác ABC đồng dạng với tam giác A’B’C’. Hãy chọn phát biểu sai:
Câu 7:
Hãy chọn câu đúng. Nếu tam giác ABC đồng dạng với tam giác MNP theo tỉ số k=2 thì tam giác MNP đồng dạng với tam giác ABC theo tỉ số:
Câu 8:
Hãy chọn câu đúng. Tam giác ABC đồng dạng với tam giác MNP theo tỉ số , biết chu vi của tam giác ABC bằng 40 cm. Chu vi của tam giác MNP là:
Câu 9:
Cho tam giác ABC đồng dạng với tam giác A’B’C’. Hãy chọn phát biểu sai:
Câu 10:
Hãy chọn câu đúng. Nếu tam giác ABC đồng dạng với tam giác MNP theo tỉ số k thì tam giác MNP đồng dạng với tam giác ABC theo tỉ số:
Câu 11:
Cho tứ giác ABCD có đường chéo BD chia tứ giác đó thành hai tam giác đồng dạng ΔABD ⁓ ΔBDC. Chọn câu sai.
Câu 13:
Cho tam giác ABC và hai điểm M, N lần lượt thuộc các cạnh BC, AC sao cho MN // AB. Chọn kết luận đúng.
Câu 14:
Hãy chọn câu trả lời đúng. Nếu tam giác ABC đồng dạng với tam giác A’B’C’ theo tỉ số k thì tỉ số chu vi của hai tam giác đó bằng
Câu 15:
Cho tứ giác ABCD có đường chéo BD chia tứ giác đó thành hai tam giác đồng dạng ΔABD và ΔBDC. Tính các độ dài BD, BC biết AB = 2cm, AD = 3cm, CD = 8cm.