Câu hỏi:
21/07/2024 262Cho hình vẽ dưới đây với .
Khi đó các mệnh đề
(I) ΔAHB ~ ΔCHA (g - g)
(II) ΔAHC ~ ΔBAC (g - g)
A. (I) đúng
B. (II) đúng
C. Cả (I) và (II) đều sai
D. Cả (I) và (II) đều đúng
Trả lời:
Đáp án: D
Giải thích:
Lời giải
Xét 2 tam giác vuông AHB và CHA có: BAH^ = ACH^ (gt)
=> ΔAHB ~ ΔCHA (g - g)
=> (I) đúng
Xét 2 tam giác vuông AHC và BAC có:
C chung
=> ΔAHC ~ ΔBAC (g - g)
=> (II) đúng
Vậy cả (I) và (II) đều đúng.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC vuông ở A, AB = 6cm, AC = 8cm, đường cao AH, đường phân giác BD.
1. Tính độ dài các đoạn AD, DC lần lượt là
Câu 2:
Cho ΔDHE ~ ΔABC với tỉ số đồng dạng . Có bao nhiêu khẳng định đúng trong các khẳng định sau:
(I) Tỉ số hai đường cao tương ứng của ΔDHE và ΔABC là .
(II) Tỉ số hai đường cao tương ứng của ΔABC và ΔDHE là .
(III) Tỉ số diện tích của ΔABC và ΔDHE là .
(IV) Tỉ số diện tích của ΔDHE và ΔABC là .
Câu 3:
Cho ΔABC ~ ΔDHE với tỉ số đồng dạng . Tỉ số hai đường cao tương ứng của ΔDHE và ΔABC là:
Câu 4:
Cho tam giác ABC, phân giác AD. Gọi E, F lần lượt là hình chiếu của B và C lên AD. Chọn khẳng định không đúng.
Câu 5:
Tam giác ABC vuông tại A có đường cao AH. Cho biết AB = 3cm; AC = 4cm. Chọn kết luận không đúng.
Câu 6:
Cho tam giác ABC vuông tại A, đường cao AH chia cạnh BC thành hai đoạn thẳng HB = 7cm và HC = 18cm. Điểm E thuộc đoạn thẳng HC sao cho đường thẳng đi qua E và vuông góc với BC chia tam giác ABC thành hai phần có diện tích bằng nhau. Tính CE.
Câu 7:
Cho tam giác ABC cân tại A, AC = 20cm, BC = 24cm, các đường cao AD và CE cắt nhau ở H. Độ dài AH là:
Câu 8:
Cho tam giác ABC cân tại A, đường cao CE. Tính AB, biết BC = 24cm và BE = 9cm.
Câu 9:
Cho tam giác ABC vuông ở A, AB = 6cm, AC = 8cm, đường cao AH, đường phân giác BD. Gọi I là giao điểm của AH và BD.
1. Chọn kết luận đúng.
Câu 10:
Cho các mệnh đề sau. Chọn câu đúng.
(I) Nếu một góc nhọn của tam giác vuông này bằng một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng dạng.
(II) Nếu một góc của tam giác vuông này lớn hơn một góc của tam giác vuông kia thì hai tam giác vuông đó đồng dạng
Câu 12:
Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 3,5cm và HC = 9cm. Điểm E thuộc đoạn thẳng HC sao cho đường thẳng đi qua E và vuông góc với BC chia tam giác ABC thành hai phần có diện tích bằng nhau. Tính CE.
Câu 13:
Cho tam giác ABC vuông ở A, AB = 6cm, AC = 8cm, đường cao AH, đường phân giác BD. Gọi I là giao điểm của AH và BD.
2. Chọn khẳng định đúng.
Câu 14:
Cho tam giác ABC vuông ở A, AB = 6cm, AC = 8cm, đường cao AH, đường phân giác BD.
2. Gọi I là giao điểm của AH và BD. Chọn câu đúng.