Câu hỏi:
21/07/2024 247Cho hình thang ABCD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Hình thang ABCD có thêm điều kiện gì thì MNPQ là hình thoi. Hãy chọn câu đúng.
A. MP = QN
B. AC ⊥ BD
C. AB = AD
D. AC = BD
Trả lời:
+ Xét tam giác ABC có MN là đường trung bình nên MN // AC; MN = AC (1)
Tương tự ta có PQ là đường trung bình tam giác ADC nên PQ // AC; PQ = AC (2)
Từ (1) và (2) suy ra MN // PQ; MN = PQ => MNPQ là hình bình hành
Để hình bình hành MNPQ là hình thoi ta cần có MN = MQ
Mà MN = AC (cmt); MQ = BD (do MQ là đường trung bình tam giác ABD)
Suy ra AC = BD
Vậy để hình bình hành MNPQ là hình thoi thì AC = BD
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình thoi có độ dài hai đường chéo là 12cm và 16cm. Tính độ dài cạnh hình thoi.
Câu 3:
Cho hình thoi có độ dài hai đường chéo là 24cm và 10cm. Tính độ dài cạnh hình thoi.
Câu 5:
Cho hình bình hành ABCD. Gọi E, F là trung điểm của các cạnh AD và BC. Các đường BE, DE cắt các đường chéo AC tại P và Q. Tứ giác EPFQ là hình thoi nếu góc ACD bằng:
Câu 6:
Cho tứ giác ABCD. Gọi E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA. Các đường chéo AC, BD của tứ giác ABCD phải có điều kiện gì thì EFGH là hình thoi?
Câu 7:
Cho hình thoi ABCD. Trên các cạnh BC và CD lần lượt lấy hai điểm E và F sao cho BE = DF. Gọi G, H thứ tự là giao điểm của AE, AF với đường chéo BD. Tứ giác AGCH là hình gì?
Câu 8:
Cho hình thoi ABCD có góc A tù. Biết đường cao kẻ từ đỉnh A đến cạnh CD chia đôi cạnh đó. Tính các góc của hình thoi.
Câu 9:
Cho hình thoi ABCD. Trên các cạnh BC và CD lần lượt lấy hai điểm E và F sao cho BE = DF. Gọi G, H thứ tự là giao điểm của AE, AF với đường chéo BD. Cho OC = 4; OH = 3. Tính chu vi tứ giác AHCG.
Câu 10:
Cho tam giác ABC vuông ở A, trung tuyến AM. Gọi D là trung điểm của AB, M’ là điểm đối xứng với M qua D. Cho BC = 4cm. Tính chu vi tứ giác AMBM’.
Câu 11:
Cho tam giác ABC vuông ở A, trung tuyến AM. Gọi D là trung điểm của AB, M’ là điểm đối xứng với M qua D. Tứ giác AMBM’ là hình gì?