Câu hỏi:
20/07/2024 243Cho hình lập phương ABCD.A 'B'C'D' có cạnh bằng 1. Gọi M, N lần lượt là trung điểm của AB và CD. Tính khoảng cách giữa hai đường thẳng A'C và MN.
Trả lời:
Chọn B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có đáy ABC là tam giác vuông tại A và có AB = 4cm. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với (ABC). Lấy M thuộc SC sao cho CM = 2MS. Khoảng cách giữa hai đường AC và BM là
Câu 2:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B. , góc và khoảng cách từ A đến mặt phẳng (SBC) bằng . Thể tích khối cầu ngoại tiếp hình chóp S.ABC là
Câu 3:
Cho hình chóp đều S.ABCD có cạnh đáy 2a, góc giữa mặt bên và mặt đáy bằng . Tính thể tích của khối chóp S. ABCD
Câu 4:
Hình chóp S.ABCD có đáy là hình chữ nhật, AB = a, ,SC tạovới mặt đáy một góc 45°. Mặt cầu ngoại tiếp hình chóp S.ABCD có bán kính bằng . Thể tích khối chóp S.ABCD bằng.
Câu 5:
Cho hình chóp S.ABC. Gọi M,N lần lượt là trung điểm của SA và BC. P là điểm nằm trên cạnh AB sao cho . Gọi Q là giao điểm của SC với mặt phẳng (MNP). Tính
Câu 6:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA = a và SA vuông góc với đáy. Gọi M là trung điểm SB, N là điểm thuộc cạnh SD sao cho SN = 2ND. Tính tỉ số thể tích
Câu 7:
Cho hình lập phương ABCD.A’B’C’D’. Gọi M, N, P lần lượt là trung điểm các cạnh AB, BC, C’D’. Xác định góc giữa hai đường thẳng MN và AP
Câu 8:
Cho hình chóp S.ABCD có đáy ABCD là một tứ giác (AB không song song CD). Gọi N là trung điểm của SD, M là điểm nằm trên cạnh SB sao cho SM=3MB , O là giao điểm của AC và BD. Cặp đường thẳng nào sau đây cắt nhau
Câu 9:
Cho hình chóp tam giác S.ABC biết AB = 3, BC = 4, CA = 5. Tính thể tích khối chóp SABC biết các mặt bên của hình chóp đều tạo với mặt đáy một góc 30
Câu 10:
Cho hình chóp SABCD có đáy ABCD là hình chữ nhật với và và . Gọi K là hình chiếu vuông góc của B trên AC, H là hình chiếu vuông góc của K trên SA. Tính cosin góc giữa đường thẳng SB và mặt phẳng (BKH).
Câu 11:
Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a. Góc hợp bởi cạnh bên và mặt phẳng đáy bằng 60°. Khi đó khoảng cách giữa hai đường thẳng SA và BC bằng.
Câu 12:
Cho hình lập phương ABCD.A'B'C'D' cạnh a. Các điểm E và F lần lượt là trung điểm của C'B' và C'D'. Mặt phẳng ( AEF) cắt khối lập phương đã cho thành hai phần, gọi V1 là thể tích khối chứa điểm A' và V2 là thể tích khối chứa điểm C’. Khi đó tỉ số bằng
Câu 13:
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB = a, BC = 2a, AA’ = a. Lấy điểm I trên cạnh AD sao cho AI = 3ID. Tính thể tích của khối chóp B’.IAC.
Câu 14:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SAD là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Biết rằng diện tích mặt cầu ngoại tiếp khối chóp S.ABCD là Khoảng cách giữa hai đường thẳng SD và AC gần nhất với giá trị nào sau đây?
Câu 15:
Cho hình chóp S.ABC có đáy là tam giác ABC đều cạnh a, tam giác SBA vuông tại B, tam giác SAC vuông tại C. Biết góc giữa hai mặt phẳng (SAB) và (ABC) bằng 600. Tính khoảng cách từ điểm C đến mặt phẳng (SAB)