Câu hỏi:
13/07/2024 189Cho hình cầu (S) tâm I, bán kính R không đổi. Một hình trụ có chiều cao h và bán kính đáy r thay đổi nội tiếp hình cầu. Tính chiều cao h theo R sao cho diện tích xung quanh của hình trụ lớn nhất.
Trả lời:
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một chiếc cốc hình nón có chiều cao h=4 và bán kính đáy R=2 đang chứa một lượng nước có thể tích V. Người ta bỏ vào bên trong cốc một viên bi hình cầu có bán kính r=1 thì lượng nước dâng lên vừa phủ kín viên bi. Tính thể tích V của lượng nước có trong cốc.
Câu 2:
Cho hình thang vuông tại A và B với AD=2AB=2BC=2a. Quay hình thang và miền trong của nó quanh đường thẳng chứa cạnh BC. Tính thể tích Vcủa khối tròn xoay được tạo thành.
Câu 3:
Một que kem ốc quế gồm hai phần: phần kem có dạng hình cầu, phần ốc quế có dạng hình nón. Giả sử hình cầu và hình nón có bán kính bằng nhau; biết rằng nếu kem tan chảy hết thì sẽ làm đầy phần ốc quế. Biết thể tích phần kem sau khi tan chảy chỉ bằng 75% thể tích kem đóng băng ban đầu. Gọi h và r lần lượt là chiều cao và bán kính của phần ốc quế. Tính tỉ số .
Câu 4:
Cho hình thang ABCD có , AB=BC=a, AD=2a. Tính thể tích khối tròn xoay sinh ra khi hình thang ABCD quay quanh CD.
Câu 5:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB=a, AD=2a tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M,N lần lượt là trung điểm các cạnh AD, DC. Tính bán kính R của mặt cầu ngoại tiếp hình chóp S.DMN.
Câu 6:
Có một khối cầu bằng gỗ bán kính R=10cm. Sau khi cưa bằng hai chỏm cầu có bán kính đáy bằng một nửa R đối xứng nhau qua tâm khối cầu, một người thợ khoan xuyên tâm khối cầu. Người thợ đã khoan bỏ đi phần hình trụ có trục của nó trùng với trục hình cầu; mặt cắt của hình trụ vuông góc với trục hình trụ là một hình tròn có bán kính bằng 1/2R. Tính thể tích V của phần còn lại của khối cầu (làm tròn đến số thập phân thứ ba).
Câu 7:
Một hình thang cân ABCD có đáy nhỏ AB=1, đáy lớn CD=3, cạnh bên . Cho hình thang ABCD quay quanh AB ta được khối tròn xoay có thể tích là:
Câu 8:
Cho hình thang cân ABCD có đáy nhỏ AB=1, đáy lớn CD=3, cạnh bên quay quanh đường thẳng AB. Tính thể tích V của khối tròn xoay tạo thành.
Câu 10:
Một cơ sở sản xuất kem chuẩn bị làm 1000 chiếc kem giống nhau theo đơn đặt hàng. Cốc đựng kem có dạng hình tròn xoay được tạo thành khi quay hình thang ABCD vuông tại A và D xung quanh trục AD (xem hình vẽ).
Chiếc cốc có bề dày không đáng kể, chiều cao 7,2cm; đường kính miệng cốc bằng 6,4cm; đường kính đáy cốc bằng 1,6cm. Kem được đỏ đầy cốc và dư ra phía ngoài một lượng có dạng nửa hình cầu, có bán kính bằng bán kính miệng cốc. Cơ sở đó cần dùng lượng kem gần nhất với giá trị nào trong các giá trị sau:
Câu 11:
Cho khối chóp S.ABCD có ; đáy ABCD là hình thang vuông tại A và B với AB=BC=a; AD=2a; SA=a. Gọi E là trung điểm của AD. Tìm tâm và bán kính mặt cầu ngoại tiếp hình chóp S.ECD.
Câu 12:
Một cốc nước hình trụ có chiều cao 9cm, đường kính 6cm. Mặt đáy phẳng và dày 1cm, thành cốc dày 0,2cm. Đổ vào cốc 120ml nước sau đó thả vào cốc 5 viên bi có đường kính 2cm. Hỏi mặt nước trong cốc cách mép cốc bao nhiêu cm. (Làm tròn đến hai chữ số sau dấu phẩy).
Câu 13:
Một cốc nước có dạng hình trụ chiều cao là 15cm, đường kính đáy là 6cm, lượng nước ban đầu trong cốc cao 10cm. Thả vào cốc nước 5 viên bi hình cầu có cùng đường kính là 2cm. Hỏi sau khi thả 5 viên bi, mực nước trong cốc cách miệng cốc bao nhiêu cm ? (Kết quả làm tròn sau dấu phẩy 2 chữ số).
Câu 14:
Cho hình nón có bán kính đáy bằng 6, chiều cao bằng 8. Biết rằng có một mặt cầu tiếp xúc với tất cả các đường sinh của hình nón, đồng thời tiếp xúc với mặt đáy của hình nón. Tính bán kính mặt cầu đó.
Câu 15:
Một khối đá có hình là một khối cầu có bán kính R, người thợ thợ thủ công mỹ nghệ cần cắt và gọt viên đá đó thành một viên đá cảnh có hình dạng là một khối trụ. Tính thể tích lớn nhất có thể của viên đá cảnh sau khi đã hoàn thiện.