Trang chủ Lớp 11 Toán Giải SGK Toán 11 KNTT Ôn tập chương 8

Giải SGK Toán 11 KNTT Ôn tập chương 8

Giải SGK Toán 11 KNTT Ôn tập chương 8

  • 40 lượt thi

  • 10 câu hỏi

  • 0 phút

Danh sách câu hỏi

Câu 4:

20/07/2024

Tại một hội thảo quốc tế có 50 nhà khoa học, trong đó có 31 người thành thạo tiếng Anh, 21 người thành thạo tiếng Pháp và 5 người thành thạo cả tiếng Anh và tiếng Pháp. Chọn ngẫu nhiên một người trong hội thảo.

Xác suất để người được chọn không thành thạo cả hai thứ tiếng Anh hay Pháp là

A. 750.                    B. 350.                  C. 950 .                   D. 1150.

Xem đáp án

Đáp án đúng là: B

Gọi E là biến cố “Người được chọn không thành thạo cả hai thứ tiếng Anh hay Pháp”.

Khi đó, E¯ là biến cố “Người được chọn thành thạo ít nhất một trong hai thứ tiếng Anh hoặc Pháp”.

Ta có: E¯ = A B.

Do đó, P(E) = 1 – P(E¯) = 1 – P(A B) = 1 – 4750=350.

Vậy xác suất để người được chọn không thành thạo cả hai thứ tiếng Anh hay Pháp là 350.


Câu 6:

13/07/2024

Một đoàn khách du lịch gồm 31 người, trong đó có 7 người đến từ Hà Nội, 5 người đến từ Hải Phòng. Chọn ngẫu nhiên một người trong đoàn. Tính xác suất để người đó đến từ Hà Nội hoặc đến từ Hải Phòng.

Xem đáp án

Số cách chọn một người trong đoàn là: 31.

Số người đến từ Hà Nội hoặc đến từ Hải Phòng là: 7 + 5 = 12.

Vậy xác suất để người đó đến từ Hà Nội hoặc đến từ Hải Phòng là 1231.


Câu 7:

13/07/2024

Gieo một con xúc xắc cân đối, đồng chất liên tiếp hai lần. Xét các biến cố sau:

A: “Ở lần gieo thứ nhất, số chấm xuất hiện trên con xúc xắc là 1”;

B: “Ở lần gieo thứ hai, số chấm xuất hiện trên con xúc xắc là 2”;

C: “Tổng số chấm xuất hiện trên con xúc xắc ở hai lần gieo là 8”;

D: “Tổng số chấm xuất hiện trên con xúc xắc ở hai lần gieo là 7”.

Chứng tỏ rằng các cặp biến cố A và C; B và C; C và D không độc lập.

Xem đáp án

Không gian mẫu là tập hợp số chấm xuất hiện khi gieo con xúc xắc hai lần liên tiếp khi đó n(Ω) = 6 . 6 = 36.

A = {(1; 1); (1; 2); (1; 3); (1; 4); (1; 5); (1; 6)}. Suy ra: P(A) = 636=16.

B = {(1; 2); (2; 2); (3; 2); (4; 2); (5; 2); (6; 2)}. Suy ra: P(B) = 636=16.

C = {(2; 6); (3; 5); (4; 4); (5; 3); (6; 2)}. Suy ra: P(C) = 536.

D = {(1; 6); (2; 5); (3; 4); (4; 3); (5; 2); (6; 1)}. Suy ra: P(D) = 636=16.

Do đó:

P(A) . P(C) = 16.536=5216 ;

P(B) . P(C) = 16.536=5216;

P(C) . P(D) = 536.16=5216.

Mặt khác:

AC = . Suy ra: P(AC) = 0.

BC = {(6; 2)}. Suy ra: P(BC) = 136.

CD = . Suy ra: P(CD) = 0

Khi đó:

P(AC) ≠ P(A) . P(C) ;

P(BC) ≠ P(B) . P(C);

P(CD) ≠ P(C) . P(D).

Vậy các cặp biến cố A và C; B và C; C và D không độc lập.


Câu 8:

17/07/2024

Hai chuyến bay của hai hãng hàng không X và Y, hoạt động độc lập với nhau. Xác suất để chuyến bay của hãng X và hãng Y khởi hành đúng giờ tương ứng là 0,92 và 0,98.

Dùng sơ đồ hình cây, tính xác suất để:

a) Cả hai chuyến bay khởi hành đúng giờ;

Xem đáp án

Gọi biến cố A: “Chuyến bay của hãng X khởi hành đúng giờ”, biến cố B: “Chuyến bay của hãng Y khởi hành đúng giờ”. Từ giả thiết, ta có hai biến cố A và B độc lập.

Ta có sơ đồ hình cây để mô tả như sau:

Hai chuyến bay của hai hãng hàng không X và Y, hoạt động độc lập với nhau. Xác suất để chuyến (ảnh 1)

Theo sơ đồ hình cây, ta có:

a) P(AB) = P(A) . P(B) = 0,92 . 0,98 = 0,9016.

Vậy xác suất để cả hai chuyến bay khởi hành đúng giờ là 0,9016.


Câu 9:

13/07/2024

b) Chỉ có một chuyến bay khởi hành đúng giờ;

Xem đáp án

b) P(AB¯  A¯B) = P(AB¯) + P(A¯B) = 0,92 . 0,02 + 0,08 . 0,98 = 0,0968.

Vậy xác suất để chỉ có một chuyến bay khởi hành đúng giờ 0,0968.


Câu 10:

13/07/2024

c) Có ít nhất một trong hai chuyến bay khởi hành đúng giờ.

Xem đáp án

c) P(A¯ B¯) = 0,08 . 0,02 = 0,0016

Suy ra P(A B) = 1 – P(A¯ B¯) = 1 – 0,0016 = 0,9984.

Vậy xác suất để có ít nhất một trong hai chuyến bay khởi hành đúng giờ là 0,9984.

 


Bắt đầu thi ngay