Câu hỏi:
19/07/2024 573Có mấy loại bài toán tìm kiếm tuần tự:
A. 1
B. 2
C. 3
D. 4
Trả lời:
Đáp án đúng là: B
Có hai loại bài toán tìm kiếm là:
- Tìm kiếm trong dãy không sắp thứ tự.
- Tìm kiếm trong dãy đã sắp thứ tự.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho một dãy số: 12, 14, 32, 45, 33. Kết quả của bài toán “Tìm xem số 13 có trong dãy này không” là:
Câu 2:
Trong thuật toán tìm kiếm tuần tự có mấy khả năng xảy ra khi kết thúc tìm kiếm tuần tự:
Câu 3:
Trong thuật toán tìm kiếm tuần tự thao tác được lặp đi lặp lại là:
Câu 4:
Khẳng định nào sau đây là sai khi nói về thuật toán tìm kiếm tuần tự:
Câu 5:
Cho một dãy số: 12, 13, 32, 45, 33. Số lần so sánh trong bài toán “Tìm xem số 13 có trong dãy này không” là:
Câu 6:
Khi dãy không có thứ tự, ta áp dụng thuật toán tìm kiếm tuần tự để:
Câu 8:
Trong thuật toán tìm kiếm tuần tự, việc tìm kiếm tuần tự kết thúc ở giữa chừng của dãy khi:
Câu 9:
Cho một dãy số: 12, 13, 32 ,45, 33. Các bước của thuật toán “tìm xem số 13 có trong dãy này không” là:
Bước 2: Lặp khi (chưa xét hết dãy) và (kết quả=chưa tìm thấy):
Nếu số đang xét ≠13: Chuyển xét số tiếp theo trong dãy.
Trái lại kết quả=tìm thấy
Hết nhánh
Hết lặp
Bước 3: Nếu kết quả=chưa tìm thấy: Thông báo không có số 13 trong dãy.
Hết nhánh.
Bước 2: Lặp khi (chưa xét hết dãy) và (kết quả=chưa tìm thấy):
Nếu số đang xét ≠13: Chuyển xét số tiếp theo trong dãy.
Trái lại kết quả=tìm thấy
Hết nhánh
Hết lặp
Trái lại kết quả=tìm thấy
Nếu số đang xét ≠13: Chuyển xét số tiếp theo trong dãy.
Trái lại kết quả=tìm thấy
Câu 10:
Trong thuật toán tìm kiếm tuần tự, việc tìm kiếm dò tìm đến phần tử cuối dãy khi:
Câu 11:
Trong các bài toán sau bài toán nào có thể áp dụng thuật toán tìm kiếm tuần tự:
Câu 12:
Cho một dãy số: 12, 13, 32, 45, 33. Kết quả của bài toán “Tìm xem số 33 có trong dãy này không” là:
Câu 13:
Khẳng định nào sau đây là đúng khi nói về thuật toán tìm kiếm tuần tự?
Câu 14:
Trong thuật toán tìm kiếm tuần tự, việc tìm kiếm sẽ dừng khi: