Câu hỏi:
18/07/2024 155
Phần tự luận (7 điểm)
Cho tam giác ABC nhọn, trung tuyến AD. Kẻ DN song song với AB (N ∈ AC). Kẻ DM song song với AC (M ∈ AB). MN cắt AD tại O.
a) Chứng minh A và D đối xứng với nhau qua điểm O.
b) Tính độ dài MN khi BC = 16cm.
Trả lời:
a) Ta có DN // AB, DM // AC
⇒ ANDM là hình bình hành
⇒ OA = OD hay A và D đối xứng với nhau qua điểm O.
b) D là trung điểm của BC (gt), DM // AC
⇒ M là trung điểm của AB
Tương tự N là trung điểm của AC
Do đó MN là đường trung bình của ΔABC
⇒ MN = (1/2)BC = (1/2).16 = 8cm.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình thoi ABCD tâm O. Trên tia đối của các tia BA, CB, DC, AD lần lượt các điểm E, F, G, H sao cho BE = CF = DG = AH.
a) Chứng minh tứ giác EFGH là hình bình hành.
b) Chứng minh điểm O là tâm đối xứng của hình bình hành EFGH.
c) Hình thoi ABCD phải có điều kiện gì để EFGH trở thành hình thoi ?
Câu 2:
Cho hình vuông ABCD có chu vi bằng 16cm. Độ dài đường chéo AC của hình vuông là:
Câu 3:
Cho hình chữ nhật ABCD có cạnh AD bằng nửa đường chéo AC. Góc nhọn tạo bởi hai đường chéo là:
Câu 6:
Cho ΔABC. Gọi E, F lần lượt là trung điểm của AB và AC. Biết BC = 7cm. Độ dài đoạn thẳng EF là:
Câu 7:
Phần trắc nghiệm (3 điểm)
Tổng các góc ngoài của tứ giác có số đo là: