Câu hỏi:
15/07/2024 146Cho tam giác ABC. Các điểm D, E, F theo thứ tự làm trung điểm của BC, CA, AB. Các điểm A’, B’, C’ theo thứ tự là trung điểm của EF, DF, DE. Xét các khẳng định sau:
(I) ΔEDF ~ ΔABC theo tỉ số
(II) ΔA’B’C’ ~ ΔABC theo tỉ số
(III) ΔA’B’C’ ~ ΔEDF theo tỉ số k = 2
Số khẳng định đúng là:
A. 2
B. 1
C. 3
D. 0
Trả lời:
Đáp án A
Vì D, E, F theo thứ tự làm trung điểm của BC, CA, AB nên EF, ED, FD là các đường trung bình của tam giác ABC nên suy ra ΔEDF ~ ΔABC (c - c - c) theo tỉ số đồng dạng hay (I) đúng.
Tương tự ta có A’B’, B’C’, C’A’ là các đường trung bình của tam giác DEF nên ΔA’B’C’ ~ ΔDEF theo tỉ số nên (III) sai
Theo tính chất đường trung bình mà (cmt) suy ra
Tương tự
Do đó ΔA’B’C’ ~ ΔABC (c - c - c) theo tỉ số hay (II) đúng.
Do đó có 2 khẳng định đúng
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC. Các điểm D, E, F theo thứ tự làm trung điểm của BC, CA, AB. Các điểm A’, B’, C’ theo thứ tự là trung điểm của EF, DF, DE. Chọn câu đúng?
Câu 2:
Một tam giác có cạnh nhỏ nhất bằng 8, hai cạnh còn lại bằng x và y (x < y). Một tam giác khác có cạnh lớn nhất bằng 27, hai cạnh còn lại cũng bằng x và y. Tính x và y để hai tam giác đó đồng dạng.
Câu 3:
Một tam giác có cạnh nhỏ nhất bằng 12, hai cạnh còn lại bằng x và y (x < y). Một tam giác khác có cạnh lớn nhất bằng 40,5, hai cạnh còn lại cũng bằng x và y. Tính x và y để hai tam giác đó đồng dạng, từ đó suy ra giá trị của S = x + y bằng: