Câu hỏi:
23/07/2024 322Cho một đồng hồ cát như hình bên dưới (gồm 2 hình nón chung đỉnh ghép lại), trong đó đường sinh bất kỳ của hình nón tạo với đáy một góc như hình bên. Biết rằng chiều cao của đồng hồ là 30cm và tổng thể tích của đồng hồ là 1000. Hỏi nếu cho đầy lượng cát vào phần trên thì khi chảy hết xuống dưới, khi đó tỉ lệ thể tích lượng cát chiếm chỗ và thể tích phần phía dưới là bao nhiêu?
Trả lời:
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một khối đồ chơi gồm một khối trụ và một khối nón có cùng bán kính được chồng lên nhau, độ dài đường sinh khối trụ bằng độ dài đường sinh khối nón và bằng đường kính của khối trụ, khối nón (tham khảo hình vẽ). Biết thể tích của toàn bộ khối đồ chơi là 50, thể tích khối trụ gần với số nào nhất trong các số sau
Câu 2:
Một khúc gỗ hình trụ có bán kính R bị cắt bởi một mặt phẳng không song song với đáy ta được thiết diện là một hình elip. Khoảng cách từ điểm A đến mặt đáy là 12cm khoảng cách từ điểm B đến mặt đáy là 20cm. Đặt khúc gỗ đó vào trong hình hộp chữ nhật có chiều cao bằng 20cm chứa đầy nước sao cho đường tròn đáy của khúc gỗ tiếp xúc với các cạnh đáy của hình hộp chữ nhật. Sau đó, người ta đo lượng nước còn lại trong hình hộp chữ nhật là 2 lít. Tính bán kính của khúc gỗ
Câu 3:
Lượng nguyên liệu cần dùng để làm ra một chiếc nón lá được ước lượng qua phép tính diện tích xung quanh của mặt nón. Cứ 1kg lá dùng để làm nón có thể làm ra số nón có tổng diện tích xung quanh là 6,13. Hỏi nếu muốn làm ra 1000 chiếc nón lá giống nhau có đường kính vành nón 50cm, chiều cao 30cm thì cần khối lượng lá gần nhất với con số nào dưới đây? (coi mỗi chiếc nón có hình dạng là một hình nón)
Câu 4:
Tính diện tích vải tối thiểu để may được chiếc mũ có hình dạng và kích thước (cùng đơn vị đo) được cho bởi hình vẽ bên (không kể viền, mép) biết phía trên có dạng hình nón và phía dưới (vành mũ) có dạng hình vành khăn.
Câu 5:
Một khối gỗ hình trụ tròn xoay có bán kính đáy bằng 1, chiều cao bằng 2. Người ta khoét từ hai đầu khối gỗ hai nửa khối cầu mà đường tròn đáy của khối gỗ là đường tròn lớn của mỗi nửa khối cầu. Tỉ số thể tích phần còn lại của khối gỗ và cả khối gỗ ban đầu là:
Câu 6:
Một khối nón có bán kính đáy bằng 2cm, chiều cao bằng cm. Một mặt phẳng đi qua đỉnh và tạo với đáy một góc chia khối nón làm 2 phần. Tính thể tích V phần nhỏ hơn (Tính gần đúng đến hàng phần trăm).
Câu 7:
Người ta làm một dụng cụ sinh hoạt gồm hình nón và hình trụ như hình vẽ (không có nắp đậy trên). Cần bao nhiêu vật liệu để làm (các mối hàn không đáng kể, làm tròn kết quả đến một chữ số thập phân sau dấu phẩy)?
Câu 8:
Một thùng đựng nước hình trụ có bán kính đáy là 65cm và chiều cao 160cm. Hỏi thùng đó đựng được tối đa bao nhiêu lít nước? (Kết quả lấy đến chữ số thập phân thứ nhất)
Câu 9:
Cần sản xuất một vỏ hộp sữa hình trụ có thể tích V cho trước. Để tiết kiệm vật liệu nhất thì bán kính đáy phải bằng
Câu 10:
Một khối đồ chơi gồm một khối hình trụ (T) gắn chồng lên một khối hình nón (N), lần lượt có bán kính đáy và chiều cao tương ứng là thỏa mãn (hình vẽ). Biết rằng thể tích của khối nón (N) bằng 20. Thể tích của toàn bộ khối đồ chơi bằng
Câu 11:
Một cái phễu có dạng hình nón. Người ta đổ một lượng nước vào phễu sao cho chiều cao của lượng nước trong phễu bằng chiều cao của phễu. Hỏi nếu bịt kín miệng phễu rồi lộn ngược phễu lên thì chiều cao của nước xấp xỉ bằng bao nhiêu ? Biết rằng chiều cao của phễu là 15cm.
Câu 12:
Sử dụng mảnh inox hình chữ nhật ABCD có diện tích bằng và cạnh BC= x (m) để làm một thùng đựng nước có đáy, không có nắp theo quy trình như sau: Chia hình chữ nhật ABCD thành 2 hình chữ nhật ADNM và BCNM, trong đó phần hình chữ nhật ADNM được gò thành phần xung quanh hình trụ có chiều cao bằng AM; phần hình chữ nhật BCNM được cắt ra một hình tròn để làm đáy của hình trụ trên (phần inox còn thừa được bỏ đi). Tính gần đúng giá trị x để thùng nước trên có thể tích lớn nhất (coi như các mép nối không đáng kể).
Câu 13:
Một con quạ bị khát nước, nó tìm thấy một bình đựng nước hình trụ, do mức nước trong bình chỉ còn lại hai phần ba so với thể tích của bình nên nó không thể thò đầu vào uống nước được. Nó liền gắp 3 viên bi ve hình cầu để sẵn bên cạnh bỏ vào bình thì mực nước dâng lên vừa đủ đầy bình và nó có thể uống nước. Biết 3 viên bi ve hình cầu đều có bán kính là 1cm và chiều cao của bình hình trụ gấp 8 lần bán kính của nó. Diện tích xung quanh của bình hình trụ nói trên gần với số nào nhất trong các số sau ?
Câu 14:
Một cái “cù” (đồ chơi trẻ em) gồm hai khối: khối trụ và khối nón như hình bên. Chiều cao và bán kính khối trụ lần lượt bằng , chiều cao và bán kính đáy của khối nón lần lượt bằng thỏa mãn , . Biết thể tích toàn khối là 30cm, thể tích khối bằng
Câu 15:
Cho khối nón (N) có chiều cao h=2cm, bán kính đáy r=25cm. Gọi là mặt phẳng đi qua đỉnh của (N) và cách tâm của mặt đáy 12 cm. Khi đó cắt (N) theo một thiết diện có diện tích là: